Magnetic Circular Dichroism of the Urbach Edge in KI, CdTe, and TlCl

  • R. T. Williams
  • S. E. Schnatterly
Part of the Optical Physics and Engineering book series (OPEG)


Magnetic circular dichroism in the low-energy tail of the fundamental absorption edge has been measured in KI, CdTe, and TlCl, covering a substantial range of temperatures and spanning three to four decades of absorption coefficient. The data will be discussed in relation to simple models of interactions that have been proposed to account for exponential broadening of the absorption edges in these materials.


Faraday Rotation Fuse Quartz Alkali Halide Magnetic Circular Dichroism Exciton Peak 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    S.E. Schnatterly, Phys. Rev. B1, 921 (1970).ADSCrossRefGoogle Scholar
  2. 2.
    S.N. Jasperson and S.E. Schnatterly, Rev. Sci. Instrum. 40, 761 (1969).ADSCrossRefGoogle Scholar
  3. 3. Nobel, Philips Res. Repts. 14, 361 (1959).Google Scholar
  4. 4.
    D.T.F. Marple, Phys. Rev. 150, 728 (1966).ADSCrossRefGoogle Scholar
  5. 5.
    T. Tomiki, T. Miyata, and H. Tsukamoto, Z. Naturforsch. 29a, 145 (1974).ADSGoogle Scholar
  6. 6.
    R.K. Abrenkiel and K.J. Teegarden, Phys. Stat. Sol. (b) 51, 603 (1972).ADSCrossRefGoogle Scholar
  7. 7.
    G. Baldini and G. Canossi, Sol. St. Commun. 10, 373 (1972).ADSCrossRefGoogle Scholar
  8. 8.
    D.Y. Smith and D.L. Dexter, Progress in Optics, Vol. X (North Holland, Amsterdam, 1972 ), p. 167.Google Scholar
  9. 9.
    R.T. Williams and M.N. Kabler, Phys. Rev. B9, 1897 (1974)ADSCrossRefGoogle Scholar
  10. M.J. Marrone, F.W. Patten, and M.N. Kabler, Phys. Rev. Lett. 31, 467 (1973)ADSCrossRefGoogle Scholar
  11. M.N. Kabler and D.A. Patterson, Phys. Rev. Lett. 19, 652 (1967).ADSCrossRefGoogle Scholar
  12. Y. Toyozawa, Tech. Rept. ISSP (Univ. Tokyo) A119, (1964).Google Scholar
  13. 11.
    T.H. Keil, Phys. Rev. 144, 582 (1966).ADSCrossRefGoogle Scholar
  14. 12.
    P.S. Kireev, L.V. Volkova, and V.V. Volkov, Soviet Phys.-Semicond. 5, 1816 (1972)Google Scholar
  15. M. Zvara, F. Zaloudek, and V. Prosser, Phys. Stat. Sol. 16, K21 (1966).ADSCrossRefGoogle Scholar
  16. 13.
    V.V. Karmazin and V.K, Miloslayskii, Soviet Phys.Semicond. 5, 866 (1971).Google Scholar
  17. 14.
    A.K. Walton and T.S. Moss, Proc. Phys. Soc. 78, 1393 (1961).ADSCrossRefGoogle Scholar
  18. 15.
    V.V. Karmazin and V.K. Miloslvaskii, Soviet Phys.Semicond. 5, 928 (1971)Google Scholar
  19. V.V. Karmazin, V.K. Miloslayskii, and V.V. Mussil, Soviet Phys.-Semicond. 7, 639 (1973).Google Scholar
  20. 16.
    I.M. Boswarva and A.B. Lidiard, Proc. Phys. Soc. London, A278, 588 (1964).ADSCrossRefGoogle Scholar
  21. 17.
    J.D. Dow and D. Redfield, Phys. Rev. B5, 594 (1972).ADSCrossRefGoogle Scholar
  22. 18.
    H. Sumi and Y. Toyozawa, J. Phys. Soc. Japan 31, 342 (1971).ADSCrossRefGoogle Scholar
  23. 19.
    B. Segall, Phys. Rev. 150, 734 (1966).ADSCrossRefGoogle Scholar
  24. 20.
    E. Mohler, G. Schlögl, and J. Treusch, Phys. Rev. Lett. 27, 424 (1971).ADSCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1975

Authors and Affiliations

  • R. T. Williams
    • 1
  • S. E. Schnatterly
    • 1
  1. 1.Princeton UniversityUSA

Personalised recommendations