Urbach’s Rule states that the fundamental optical absorption edge exhibits an exponential shape: KA(ω) ∝ exp g(ħω-ħω0). The rule is valid for a variety of non-conducting materials, including semiconductors and alkali halides (with g=σ/kBT at high temperature, σ being nearly unity and weakly dependent on temperature). In the case of semiconductors, the origin of the Urbach edge is well established, largely as a result of a unification of early theoretical work by Redfield and by Dexter, and as a result of experiments by Redfield and Afromowitz and by Garrod and Bray. The semiconductor Urbach rule is attributable to ionization of the exciton by internal electric microfields. The extent to which the field-ionization mechanism is responsible for Urbach edges in all insulators is discussed with emphasis on recent experiments by Williams and Schnatterly. Finally it is suggested that in certain circumstances the shapes of multiphonon edges and Urbach edges should be related.


Absorption Edge Alkali Halide Fundamental Absorption Edge Longitudinal Optical Phonon Exponential Shape 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    F. Urbach, Phys. Rev. 92, 1324 (1953).ADSCrossRefGoogle Scholar
  2. 2.
    J. D. Dow and D. Redfield, Phys. Rev. B5, 594 (1972).ADSCrossRefGoogle Scholar
  3. 3.
    See, e.g., B. H. Winters, S. Silverman, and W. S. Benedict, J. Quant. Spectrosc. and Radiative Transfer 4, 527 (1964). The author thanks Dr. G. Birnbaum for bringing this reference to his attention.Google Scholar
  4. 4.
    Y. Toyozawa, Tech. Rept. ISSP (Univ. Tokyo) A119 (1964).Google Scholar
  5. 5.
    D. Redfield and M. A. Aframowitz, Appl. Phys. Letters 11, 138 (1967).ADSCrossRefGoogle Scholar
  6. 6.
    S. E. Schnatterly, Phys. Rev. Bl, 921 (1970).Google Scholar
  7. 7.
    R. T. Williams and S. E. Schnatterly (to be published), and these proceedings.Google Scholar
  8. 8.
    D. Redfield, Phys. Rev. 130, 916 (1963).ADSCrossRefGoogle Scholar
  9. 9.
    D. L. Dexter, Phys. Rev. Letters 19, 383 (1967).Google Scholar
  10. 10.
    J. D. Dow and D. Redfield, Phys. Rev. Bl, 3358 (1970); J. D. Dow, Comments on Sol. St. Phys. IV, 35 (1972).Google Scholar
  11. 11.
    D. K. Garrod and R. Bray, Proc. 11th Internati. Conf. Phys. Semiconductors, ( PWN-Polish Scientific, Warsaw, 1972 ), p. 1167.Google Scholar
  12. 12.
    J. D. Dow, M. Bowen, R. Bray, D. L. Spears, and K. Hess, Phys. Rev. B10, 4305 (1974).ADSCrossRefGoogle Scholar
  13. 13.
    R. J. Elliott, Phys. Rev. 108, 1384 (1957).ADSCrossRefGoogle Scholar
  14. 14.
    Y. Brada and G. Yacobi, Proceed. 12th Internatl. Conf. Phys. Semicond. (M. H. Pilkuhn, ed., B. G. Teubner, Stuttgart, 1974 ), p. 1212.Google Scholar
  15. 15.
    D. Redfield and W. Burke, J. Appl. Phys. 45, 4566 (1974); S. H. Wemple, Phys. Rev. B2, 2679 (1970); M. DiDomenico and S. H. Wemple, Phys. Rev. 166, 565 (1968); A. Frova, Nuovo Cimento 55B, 1 (1968).Google Scholar
  16. 16.
    H. Sumi and Y. Toyozawa, J. Phys. Soc. Japan 31, 342 (1971).ADSCrossRefGoogle Scholar
  17. 17.
    B. Segall, Phys. Rev. 150, 734 (1966).ADSCrossRefGoogle Scholar
  18. 18.
    D. Dunn, Phys. Rev. 174, 855 (1968).ADSCrossRefGoogle Scholar
  19. 19.
    B. Bosacchi and J. E. Robinson, Sol. St. Commun. 10, 797 (1972).ADSCrossRefGoogle Scholar
  20. 20.
    J. D. Dow (to be published).Google Scholar

Copyright information

© Plenum Press, New York 1975

Authors and Affiliations

  • John D. Dow
    • 1
  1. 1.Department of Physics and Materials Research LaboratoryUniversity of Illinois at Urbana-ChampaignUrbanaUSA

Personalised recommendations