Skip to main content

Electrohydrodynamic Instabilities in Nematic Liquid Crystals

  • Chapter
Introduction to Liquid Crystals

Abstract

The best-known electrohydrodynamic instabilities in liquid crystals are the Williams domains.1 They are observed when an electric field is applied to a thin layer of a nematic liquid crystal having negative dielectric anisotropy and sufficient electrical conductivity. They manifest themselves as a set of parallel straight lines separated by a constant distance that is approximately equal to the cell thickness. They appear above a well-defined threshold voltage and exist in their original form over only a small voltage range. At higher voltages, the pattern becomes more complicated and leads to heavily scattering turbulence (dynamic scattering).2

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R. Williams, “Domains in Liquid Crystals,” J. Chem. Phys., 39, p. 384 (1963).

    Article  ADS  Google Scholar 

  2. G. H. Heilmeier, L. A. Zanoni, and L. A. Barton, “Dynamic Scattering: A New Electrooptic Effect in Certain Classes of Nematic Liquid Crystals,” Proc. IEEE, 56, p. 1162 (1968).

    Article  Google Scholar 

  3. P. A. Penz, “Voltage-Induced Velocity and Optical Focusing in Liquid Crystals,” Phys. Rev. Lett., 24, p. 1405 (1970).

    Article  ADS  Google Scholar 

  4. P. A. Penz, “Order Parameter Distribution for the Electrohydrodynamic Mode of a Nematic Liquid Crystal,” Mol. Cryst. Liq. Cryst., 15, p. 141 (1971).

    Article  Google Scholar 

  5. S. Chandrasekhar, Hydrodynamic and Hydromagnetic Stability, Clarendon Press, Oxford, England (1961).

    Google Scholar 

  6. N. Filici, “Phénomènes hydro et Aerodynamiques dans la Conduction des diélectriques Fluids,” Rev. Gen. Elect., 78, p. 717 (1969).

    Google Scholar 

  7. H. Gruler and G. Meier, “Correlation between Electrical Properties and Optical Behaviour of Nematic Liquid Crystals,” Mol. Cryst. Liq. Cryst., 12, p. 289 (1971).

    Article  Google Scholar 

  8. W. Helfrich, “Conduction-Induced Alignment of Nematic Liquid Crystals: Basic Model and Stability Considerations,” J. Chem. Phys., 51, p. 4092 (1969).

    Article  ADS  Google Scholar 

  9. E. Dubois-Violette, P. G. deGennes, and O. Parodi, “Hydrodynamic Instabilities of Nematic Liquid Crystals under AC Electric Fields,” J. Phys. (Paris), 32, p. 305 (1971).

    Article  Google Scholar 

  10. P. A. Penz and G. W. Ford, “Electromagnetic Hydrodynamics of Liquid Crystals,” Phys. Rev., A6, p. 414(1972).

    ADS  Google Scholar 

  11. D. Meyerhofer and A. Sussman, “Electrohydrodynamic Instabilities in Nematic Liquid Crystals in Low-Frequency Fields,” Appl. Phys. Lett., 20, p. 337 (1972).

    Article  ADS  Google Scholar 

  12. F. M. Leslie, “Some Constitutive Equations for Anisotropic Fluids,” Quart. J. Mech. Appl. Math., 19, p. 357 (1966).

    Article  MathSciNet  MATH  Google Scholar 

  13. F. M. Leslie, “Some Constitutive Equations for Liquid Crystals,” Arch. Ration. Mech. Analysis, 28, p. 265(1968).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  14. F. C. Frank, “On the Theory of Liquid Crystals,” Discuss. Faraday Soc., 25, p. 19 (1958).

    Article  Google Scholar 

  15. O. Parodi, “Stress Tensor for a Nematic Liquid Crystal,” J. Phys. (Paris), 31, p. 581 (1970).

    Article  Google Scholar 

  16. P. A. Penz, “Electrohydrodynamic Solutions for Nematic Liquid Crystals with Postivie Dielectric Anisotrophy,” Mol. Cryst. Liq. Cryst., 23, p. 1 (1973).

    Article  Google Scholar 

  17. V. Freedericksz and W. Zwetkoff, “Uber die Einwirkung des Elektrischen Feldes auf Anisotrope Flussigkeiten. II. Orientierung der Flussigkeit im Elektrischen Felde,” Acta Physiocochim. USSR, 3, p. 895 (1935).

    Google Scholar 

  18. H. Gruler and G. Meier, “Electric Field-Induced Deformations in Oriented Liquid Crystals of the Nematic type,” Mol. Cryst. Liq. Cryst., 16, p. 299 (1972).

    Article  Google Scholar 

  19. W. H. deJeu, C. J. Gerritsma, and T. W. Lathouwers, “Instabilities in Electric Fields of Nematic Liquid Crystals with Positive Dielectric Anisotropy: Domains, Loop Domains, and Reorientation,” Chem. Phys. Lett., 14, p. 503 (1972).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1975 RCA Laboratories

About this chapter

Cite this chapter

Meyerhofer, D. (1975). Electrohydrodynamic Instabilities in Nematic Liquid Crystals. In: Priestley, E.B., Wojtowicz, P.J., Sheng, P. (eds) Introduction to Liquid Crystals. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-2175-0_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-2175-0_9

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-2177-4

  • Online ISBN: 978-1-4684-2175-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics