Advertisement

Nematic Order: The Long Range Orientational Distribution Function

  • E. B. Priestley

Abstract

Earlier,1 in Chapter 3, the existence of the nematic phase was presented as an example of an order-disorder phenomenon. The symmetry and structure of the nematic phase were used to identify the natural order parameter <P 2 (cos θ)>, where P 2 (cos θ) is the second Legendre polynomial and the angular brackets denote a statistical average over the orientational distribution function f(cos θ). The orientational potential energy of a single molecule was shown, in the mean field approximation, to be
$$V\left( {\cos \theta } \right) = - \upsilon < P_2 \left( {\cos \theta } \right) > P_2 \left( {\cos \theta } \right)$$
([1])
where v is a number that scales with the strength of the intermolecular interaction. Using the rules of classical statistical mechanics, the theoretical orientational distribution function ρ(cos θ) was given in terms of the mean field potential V (cos θ) as
$$\rho \left( {\cos \theta } \right) = Z^{ - 1} \exp \left[ { - \beta V\left( {\cos \theta } \right)} \right]$$
([2])
with
$$z = \int\limits_0^1 {\exp \left[ { - \beta V\left( {\cos \theta } \right)} \right]d\left( {\cos \theta } \right).} $$
.

Keywords

Nematic Liquid Crystal Nematic Phase Diamagnetic Susceptibility Orientational Distribution Function Diamagnetic Anisotropy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P. J. Wojtowicz, “Introduction to the Molecular Theory of Nematic Liquid Crystals,” Chapter 3.Google Scholar
  2. 2.
    E. B. Priestley, P. S. Pershan, R. B. Meyer, and D. H. Dolphin, “Raman Scattering from Nematic Liquid Crystals. A Determination of the Degree of Ordering,” Vijnana Parishad Anusandhan Patrika, Vol. 14, p. 93 (1971).Google Scholar
  3. 3.
    Shen Jen, N. A. Clark, P. S. Pershan, and E. B. Priestley, “Raman Scattering from a Nematic Liquid Crystal: Orientational Statistics,” Phys. Rev. Lett., Vol. 31, p. 1552 (1973); E. B. Priestley and P. S. Pershan, “Investigation of Nematic Ordering Using Raman Scattering,” Mol. Cryst. Liquid Cryst., Vol. 23, p. 369 (1973); and E. B. Priestley and A. E. Bell (to be published).Google Scholar
  4. 4.
    E. B. Priestley and P. J. Wojtowicz, unpublished results.Google Scholar
  5. 5.
    N. V. Madhusudana, R. Shashidhar, and S. Chandrasekhar, “Orientational Order in Anisaldazine in the Nematic Phase,” Mol. Cryst. Liquid Cryst., Vol. 13, p. 61 (1971).CrossRefGoogle Scholar
  6. 6.
    A. Saupe and W. Maier, “Methods for the Determination of the Degree of Order in Nematic Liquid-Crystal Layers,” Z. Naturforschg., Vol. 16a, p. 816 (1961).ADSGoogle Scholar
  7. 7.
    G. Sigaud and H. Gasparoux, J. Chem. Phys. Physicochim. Biol., Vol. 70, p. 669 (1973).Google Scholar
  8. I. Haller, “Elastic Constants of the Nematic Liquid Crystalline Phase of p-Methoxybenzylidene-p-n-Butlylaniline (MBBA),” J. Chem. Phys., Vol. 57, p. 1400 (1972).ADSCrossRefGoogle Scholar
  9. P. I. Rose, Fourth International Liquid Crystal Conf., Kent State University, Kent, Ohio, 1972 (to be published) see also Ref. (5).Google Scholar
  10. 8.
    G. H. Brown, J. W. Doane, and V. D. Neff, A Review of the Structure and Physical Properties of Liquid Crystals, The CRC Press, Cleveland, Ohio (1971).Google Scholar
  11. 9.
    P. J. Wojtowicz, “Generalized Mean Field Theory of Nematic Liquid Crystals,” Chapter 4.Google Scholar
  12. 10.
    R. L. Humphries, P. G. James, and G. R. Luckhurst, “Molecular Field Treatment of Nematic Liquid Crystals,” J. Chem. Soc. Faraday Trans. II, Vol. 68, p 1031 (1972).CrossRefGoogle Scholar
  13. 11.
    L. Onsager, “The Effects of Shapes on the Interaction of Colloidal Particles,” Ann. N.Y. Acad. Sci., Vol. 51, p. 627 (1949).ADSCrossRefGoogle Scholar
  14. 12.
    P. Sheng, “Hard Rod Model of the Nematic-lsotropic Phase Transition,” Chapter 5.Google Scholar
  15. 13.
    K. Lakatos, J. Status Phys., Vol. 2, p. 121 (1970).ADSCrossRefGoogle Scholar

Copyright information

© RCA Laboratories 1975

Authors and Affiliations

  • E. B. Priestley
    • 1
  1. 1.RCA LaboratoriesPrincetonUSA

Personalised recommendations