Advertisement

Electrochemistry in Nematic Liquid-Crystal Solvents

  • Alan Sussman

Abstract

This chapter discusses the electrolytic-solution properties of low-dielectric-constant nematic solvents. Dissolved substances, if electrolytes, can contribute only a fraction of their ions to the conductance because of equilibrium between the free ions and ion pairs. If the solute forms ions through intermediate charge-transfer reactions, additional equilibria must be considered. For nematics, the solvent fluidity is anisotropic, and the conductance depends on the direction of current flow with respect to the orientation of the fluid. The variation of the conductance with temperature is directly related to the variation with temperature of both the ionic equilibrium and the fluidity.

Keywords

Double Layer Nematic Liquid Crystal Ionic Equilibrium Equivalent Conductance Phenyl Acetate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H. S. Harned and B. B. Owen, The Physical Chemistry of Electrolytic Solutions, 3rd edition, Reinhold Publishing Co., New York (1958). (A general reference for bulk properties of electrolytic solutions.)Google Scholar
  2. 2.
    R. M. Fuoss and F. Assascina, Electrolytic Conductance, Chap. XVI And XVII, Interscience Pub., Inc., New York (1959).MATHGoogle Scholar
  3. 3.
    A. Sussman, “Ionic Equilibrium and Ionic Conduction in the System Tetra-iso-pentyl Ammonium Nitrate p-Azoxyanisole,” Mol. Cryst. and Liq. Cryst., 14, p. 182 (1971).CrossRefGoogle Scholar
  4. 4.
    J. Barthel, “Conductance of Electrolyte Solutions,” Agew. Chem. Internat. Edit, 7, p. 260 (1968) (special reference to nonaqueous solvents).CrossRefGoogle Scholar
  5. 5.
    R. S. Porter and J. F. Johnson, “Orientation of Nematic Mesophases,” J. Phys. Chem., 66, p. 1826(1962).CrossRefGoogle Scholar
  6. 6.
    A. Denat, B. Gosse and J. P. Gosse, “Étude du Cristal Liquide p-Méthoxybenzilidène p-Butylaniline,” J. Chim. Phys; 2, p. 319 (1973).Google Scholar
  7. 7.
    F. Gaspard, R. Herino and F. Mondon, “Electrohydrodynamic Instabilities in DC fields of a Nematic Liquid Crystal with Negative Dielectric Anisotropy,” Chem. Phys. Lett., 25, p. 449 (1974).ADSGoogle Scholar
  8. 8.
    J. C. Lacroix and R. TeDazeon, “Sur la Mesure de Mobilitiés Ioniques dans un Cristal Liquide Nematique,” Comptes Rendus, 278, p. 623 (1974).Google Scholar
  9. 9.
    G. H. Heilmeier, L. A. Zanoni, and L. A. Barton, “Dynamic Scattering—A New Electro-optic Effect in Certain Classes of Nematic Liquid Crystals,” Proc. IEEE. 56, p. 1162 (1968).CrossRefGoogle Scholar
  10. 10.
    G. H. Heilmeier and J. Goldmacher, “A New Electric Field Controlled Reflective Optical Storage Effect in Mixed Liquid Crystal Systems,” Proc. IEEE, 57, p. 34 (1969).CrossRefGoogle Scholar
  11. 11.
    A. Sussman, “The Electro-optic Transfer Function in Nematic Liquids,” Chapter 16.Google Scholar
  12. 12.
    A. Sussman, unpublished results.Google Scholar
  13. 13.
    A. I. Baise, I. Teucher, and M. M. Labes, “Effect of Charge-Transfer Acceptors on Dynamic Scattering in a Nematic Liquid Crystal,” Appl. Phys. Lett., 21, p. 142 (1972).ADSCrossRefGoogle Scholar
  14. F. Gaspard and R. Herino, “Comments on ‘Effect of Charge-transfer Acceptors on Dynamic Scattering in a Nematic Liquid Crystal’,” Appl. Phys. Lett., 24, p. 252 (1974).CrossRefGoogle Scholar
  15. 14.
    Y. Ohnishi and M. Ozutsumi, “Properties of Nematic Liquid Crystals Doped with Hydroquinine and p-Benzoquinone: Long-term Dynamic Scattering Under DC Excitation,” Appl. Phys. Lett., 24, p. 213 (1974).ADSCrossRefGoogle Scholar
  16. 15.
    G. H. Heilmeier, L. A. Zanoni, and L. A. Barton, “Further Studies of the Dynamic Scattering Mode in Liquid Crystals and Related Topics,” IEEE Trans. Elec. Dev. ED 17, p. 22 (1970).CrossRefGoogle Scholar
  17. 16.
    A. Sussman, “Dynamic Scattering Life in the Nematic Compound p-Methoxy-benzylidene-p-Amino Phenyl Acetate as Influenced by the Current Density,” Appl. Phys. Lett., 21, p. 126 (1972).ADSCrossRefGoogle Scholar
  18. 17.
    P. Delahay, Double Layer and Electrode Kinetics, Chap. 3, Interscience-John Wiley & Sons, Inc. New York (1965).Google Scholar
  19. 18.
    M. Voinov and J. S. Dunnett, “Electrochemistry of Nematic Liquid Crystals,” J. Electrochem. Soc., 120, p. 922 (1973).CrossRefGoogle Scholar
  20. 19.
    G. Brière, R. Herino, and F. Mondon, “Correlation Between Chemical and Electrochemical Reactivity in the Isotropic Phase of a Liquid Crystalline p-Methoxybenzilidene p-n-Butylaniline,” Mol. Cryst., 19, p. 157 (1972).CrossRefGoogle Scholar
  21. 20.
    A. Denat, B. Gosse, and J. Gosse, “Chemical and Electrochemical Stability of p-Methoxybenzilidene-p-n-Butylaniline,” Chem. Phys. Lett., 18, p. 235 (1973).ADSCrossRefGoogle Scholar
  22. 21.
    A. Lomax, R. Hirasawa, and A. J. Bard, “The Electrochemistry of the Liquid Crystal N-(p-Methoxybenzilidene)-p-n-Butylanaline (MBBA),” J. Electrochem. Soc., 119, p. 1679 (1972).CrossRefGoogle Scholar
  23. 22.
    A. Derzhanski and A. G. Petrov, “Inverse Currents and Contact Behavior of Some Nematic Liquid Crystals,” Phys. Lett., 36A, p. 307 (1971).ADSGoogle Scholar

Copyright information

© RCA Laboratories 1975

Authors and Affiliations

  • Alan Sussman
    • 1
  1. 1.RCA Solid State DivisionSomervilleUSA

Personalised recommendations