The Electro-Optic Transfer Function in Nematic Liquids

  • Alan Sussman


When an electric field is applied across transparent plane-parallel electrodes containing mesomorphic liquids, many complex phenomena occur that depend on the optical, dielectric, and elastic properties of the liquid, the geometry of the test situation, and the nature of the electrical signal.1 The electro-optic transfer function is a way of specifying such optical changes. An ever increasing interest in liquid-crystal electro-optic phenomena particularly, but not entirely, in the field of display devices has caused a corresponding growth of the literature2; hence, this chapter is limited to steady-state properties of nematic liquids.


Liquid Crystal Threshold Voltage Nematic Liquid Crystal Liquid Crystal Cell Dielectric Anisotropy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Several review articles, emphasizing electro-optic properties of liquid crystals are available: R. A. Soref, “Liquid Crystal Light Control Experiments,” in The Physics of Opto-Electronic Materials, ed. W. A. Albers, Jr., Plenum Press, New York (1971); A. Sussman, “Electro-Optic Liquid Crystal Devices: Principles and Applications,” IEEE Trans. Parts, Hybrids, and Packaging, Vol. PHP8, p. 24 (1972); and A. Sussman, “Liquid Crystals in Display Systems,” in Liquid Crystalline Systems, ed. G. W. Gray and P. A. Winsor, Ellis Horwood, London (in press).Google Scholar
  2. 2.
    For example in 1969, there were 70 papers listed in Physics Abstracts. In 1970, 250; in 1971, 315; and in 1972, 390.Google Scholar
  3. 3.
    P. DeGennes, “Electrohydrodynamic Effects in Nematic Liquid Crystals I. DC Effects,” in Comments on Solid State Physics, Vol. 3, p. 35 (1970).Google Scholar
  4. P. A. Penz, Electrohydrodynamic Solutions for Nematic Liquid Crystals with Positive Dielectric Anisotropy,” Mol. Cryst., Vol. 23, p. 1 (1973).CrossRefGoogle Scholar
  5. 4.
    W. H. DeJeu, C. J. Gerritsma, and Th. W. Lathouwers, “Instabilities in Electric Fields of Nematic Liquid Crystals with Positive Dielectric Anisotropy: Domains, Loop Domains, and Reorientation,” Chem. Phys. Lett., Vol. 14, p. 503 (1972).ADSCrossRefGoogle Scholar
  6. 5.
    G. H. Heilmeier and W. Helfrich, “Orientational Oscillations in Nematic Liquid Crystals,” Appl. Phys. Lett., Vol. 16, p. 155 (1970).ADSCrossRefGoogle Scholar
  7. 6.
    H. S. Harned and B. B. Owen, The Physical Chemistry of Electrolytic Solutions, 2nd ed., Reinhold Publishing Co., New York, 1950, Chap. 4.Google Scholar
  8. 7.
    A. Sussman, “Ionic Equilibrium and Ionic Conductance in the System Tetra-iso-pentyl Ammonium Nitrate p-Azoxyanisole,” Mol. Cryst. and Liq. Cryst., Vol. 14, p. 182 (1971).CrossRefGoogle Scholar
  9. 8.
    D. Meyerhofer, A. Sussman, and R. Williams, “Electro-Optic and Hydrodynamic Properties of Nematic Liquid Films with Free Surfaces,” J. Appl. Phys., Vol. 43, p. 3685 (1972).ADSCrossRefGoogle Scholar
  10. 9.
    R. A. Soref, “Transverse Field Effects in Nematic Liquid Crystals,” Appl. Phys. Lett., Vol. 22, p. 165 (1973).ADSCrossRefGoogle Scholar
  11. N. V. Madhusudana, P. P. Karat, and S. Chandrasekhar, “Some Electrohydrodynamic Distortion Patterns in Nematic Liquid Crystals,” Current Science, Vol. 42, p. 147 (1973).Google Scholar
  12. 10.
    W. Haas, J. Adams, and J. B. Flannery, “New Electro-Optic Effect in a Room-Temperature Nematic Liquid Crystal,” Phys. Rev. Lett., Vol. 25, p. 326 (1970).ADSCrossRefGoogle Scholar
  13. 11.
    W. Helfrich, “A Simple Method to Observe the Piezoelectricity of Liquid Crystals,” Phys. Lett., Vol. 35A, p. 393 (1971).ADSGoogle Scholar
  14. 12.
    G. H. Heilmeier and J. Goldmacher, “A New Electric Field Controlled Reflective Optical Storage Effect in Mixed Liquid Crystal Systems,” Proc. IEEE, Vol. 57, p. 34 (1969).CrossRefGoogle Scholar
  15. 13.
    F. Brochard, “Backflow Effects in Nematic Liquid Crystals,” Mol. Cryst. and Liq. Cryst., Vol. 23, p. 51 (1973).CrossRefGoogle Scholar
  16. 14.
    W. Helfrich, “Molecular Theory of Flow Alignment of Nematic Liquid Crystals,” J. Chem. Phys., Vol. 50, p. 100 (1969).ADSCrossRefGoogle Scholar
  17. 14.
    W. Helfrich, “Conduction-Induced Alignment of Nematic Liquid Crystals: Basic Model and Stability Considerations,” J. Chem. Phys., Vol. 51, p. 4092 (1969).ADSCrossRefGoogle Scholar
  18. 15.
    D. Meyerhofer and A. Sussman, “The Electrohydrodynamic Instabilities in Nematic Liquid Crystals in Low-Frequency Fields,” Appl. Phys. Lett., Vol. 20, p. 337 (1972).ADSCrossRefGoogle Scholar
  19. 16.
    N. Felici, “Phenomenes Hydro et Aerodynamiques dans la Conduction des Dielectric Fluides,” Rev. Gen. Elect., Vol. 78, p. 717 (1969).Google Scholar
  20. A. Sussman, “Contribution of the Ionic Double Layer to the DC Hydrodynamic Instabilities in Nematic Liquids,” Paper presented at Fourth International Liquid Crystal Conf., Kent, Ohio, Aug. 1972.Google Scholar
  21. R. J. Turnbull, “Theory of Electrohydrodynamic Behaviour of Nematic Liquids in a Constant Field,” J. Phys. D: Appl. Phys., Vol. 6, p. 1745 (1973).ADSCrossRefGoogle Scholar
  22. 17.
    A. Derzhanski and A. G. Petrov, “Inverse Currents and Contact Behaviour of Some Nematic Liquid Crystals,” Phys. Lett., Vol. 36A, p. 307 (1971).ADSGoogle Scholar
  23. 16.
    G. H. Heilmeier, L. A. Zanoni, and L. A. Barton, “Dynamic Scattering: A New Electro-Optic Effect in Certain Classes of Nematic Liquid Crystals,” Proc. IEEE, Vol. 56, p. 1162 (1968).CrossRefGoogle Scholar
  24. 19.
    W. H. DeJeu, “Instabilities of Nematic Liquid Crystals in Pulsating Electric Fields,” Phys. Lett., Vol. 37A, p. 365 (1971).ADSGoogle Scholar
  25. Orsay Liquid Crystal Group, “Transition Between Conduction and Dielectric Regimes of the Electrohydrodynamic Instabilities in a Nematic Liquid Crystal,” Phys. Lett., Vol. 39A, p. 181 (1972).Google Scholar
  26. 20.
    P. Wild and J. Nehring, “Turn-on Time Reduction and Contrast Enhancement in Matrix-addressed Liquid Crystal Valves,” Appl. Phys. Lett., Vol. 19, p. 335 (1971).ADSCrossRefGoogle Scholar
  27. C. Stein and R. Kashnow, “A Two-Frequency Coincidence Addressing Scheme for Nematic-Liquid-Crystal Display,” Appl. Phys. Lett., Vol. 19, p. 343 (1971).ADSCrossRefGoogle Scholar
  28. 21.
    M. Schiekel and K. Fahrenschon, “Deformation of Nematic Liquid Crystals with Vertical Orientation in Electrical Fields,” Appl. Phys. Lett., Vol. 19, p. 391 (1971).ADSCrossRefGoogle Scholar
  29. R. A. Soref and M. J. Rafuse, “Electrically Controlled Birefringence of Thin Nematic Films,” J. Appl. Phys., Vol. 43, p. 2029 (1972).ADSCrossRefGoogle Scholar
  30. F. J. Kahn, “Electric-field-induced Orientational Deformation of Nematic Liquid Crystals: Tunable Birefringence,” Appl. Phys. Lett., Vol. 20, p. 199, (1972).ADSCrossRefGoogle Scholar
  31. M. Hareng, E. Leiba, and G. Assouline, “Effet du Champ Electrique sur la Biréfringence de Cristaux Liquides Nématiques,” Mol. Cryst. and Liq. Cryst., Vol. 17, p. 361 (1972).CrossRefGoogle Scholar
  32. 22.
    M. Schadt and W. Helfrich, “Voltage-Dependent Optical Activity of a Twisted Nematic Liquid Crystal,” Appl. Phys. Lett., Vol. 28, p. 127 (1971).ADSCrossRefGoogle Scholar
  33. 23.
    G. H. Heilmeier and L. A. Zanoni, “Guest-Host Interactions in Nematic Liquid Crystals. A New Electro-Optic Effect,” Appl. Phys. Lett., Vol. 13, p. 91 (1968).ADSCrossRefGoogle Scholar
  34. 24.
    I. Haller, H. A. Huggins, and M. J. Freiser, “On the Measurement of Indices of Refraction of Nematic Liquids,” Mol. Cryst. and Liq. Cryst., Vol. 16, p. 53 (1972).CrossRefGoogle Scholar
  35. 25.
    D. J. Channin, “Optical Waveguide Modulation Using Nematic Liquid Crystals,” Appl. Phys. Lett., Vol. 22, p. 365 (1973).ADSCrossRefGoogle Scholar
  36. 26.
    J. P. Sheridan, J. M. Schnur, and T. G. Giallorenzi, “Electro-Optic Switching in Low-Loss Liquid Crystal Waveguides,” Appl. Phys. Lett., Vol. 22, p. 560 (1973).ADSCrossRefGoogle Scholar
  37. 27.
    R. A. Kashnow and C. R. Stein, “Total-Reflection Liquid-Crystal Electro-Optic Device,” Appl. Optics, Vol. 12, p. 2309 (1973).ADSCrossRefGoogle Scholar
  38. 28.
    G. Assouline, A. Dmitrieff, M. Hareng, and E. Leiba, “Diffraction d’un Faisceau Laser par un Cristal Liquide Nématique Souvris à un champ Electrique,” C. R. Acad. Sci., Vol. B271, p. 857(1970).Google Scholar
  39. 29.
    W. Helfrich, “Orientation Pattern of Domains in Nematic p-azoxyanisole,” J. Chem. Phys., Vol. 51, p. 2755 (1969).ADSCrossRefGoogle Scholar
  40. 30.
    T. O. Carroll, “Liquid-Crystal Diffraction Grating,” J. Appl. Phys., Vol. 43, p. 767 (1972).ADSCrossRefGoogle Scholar
  41. 31.
    C. Deutsch and P. N. Keating, “Scattering of Coherent Light from Nematic Liquid Crystals in the Dynamic Scattering Mode,” J. Appl. Phys., Vol. 40, p. 4049 (1969).ADSCrossRefGoogle Scholar
  42. Orsay Liquid Crystal Group, “Viscosity Measurements by Quasi-Elastic Light Scattering in p-azoxyanisole,” Mol. Cryst. and Liq. Cryst., Vol. 13, p. 187 (1971).CrossRefGoogle Scholar
  43. 32.
    P. A. Penz, “Order Parameter Distribution for the Electrohydrodynamic Mode of a Nematic Liquid Crystal,” Mol. Cryst. and Liq. Cryst., Vol. 15, p. 151 (1971).CrossRefGoogle Scholar
  44. 33.
    E. Jakeman and P. N. Pusey, “Light Scattering from Electrohydrodynamic Turbulence in Liquid Crystals,” Phys. Lett., Vol. 44A, p. 456 (1973).ADSGoogle Scholar
  45. F. Scudieri, M. Bertolotti, and R. Bartolino, “Light Scattered by a Liquid Crystal: A New Quasi-Themal Source,” Applied Optics, Vol. 13, p. 181 (1974).ADSCrossRefGoogle Scholar
  46. 34.
    D. Meyerhofer and E. F. Pasierb, “Light Scattering Characteristics in Liquid Crystal Storage Materials,” Mol. Cryst. and Liq. Cryst., Vol. 20, p. 279 (1973).CrossRefGoogle Scholar
  47. 35.
    R. B. MacAnally, “Liquid Crystal Displays for Matched Filtering,” Appl. Phys. Lett., Vol. 18, p. 54 (1971).ADSCrossRefGoogle Scholar
  48. 36.
    G. W. Taylor and W. F. Kosonocky, “Ferroelectric Light Valves for Optical Memories,” Ferroelectrics, Vol. 3, p. 81 (1972).CrossRefGoogle Scholar
  49. 37.
    H. J. Caulfield and R. A. Soref, “Optical Contrast Enhancement in Liquid Crystal Devices by Spatial Filtering,” Appl. Phys. Lett., Vol. 18, p. 5 (1971).ADSCrossRefGoogle Scholar
  50. 36.
    E. Tomkins, “Liquid Crystal Viewing Screen,” Opt. Soc. Am. Meeting, Tucson, Ariz. (1971).Google Scholar
  51. 39.
    A. Sussman, “Illumination Scheme for Liquid Crystal Displays,” U.S. Patent pending.Google Scholar
  52. 40.
    R. A. Kashnow and H. S. Cole, “Electrohydrodynamic Instabilities in a High-Purity Nematic Liquid Crystal,” J. Appl. Phys., Vol. 42, p. 2134 (1971).ADSCrossRefGoogle Scholar
  53. 41.
    M. Hareng, G. Assouline, and E. Leiba, “La Biréfringence Electriquement Contrôlée dans les Cristaux Liquides Nématiques,” Appl. Optics, Vol. 11, p. 2920 (1972).ADSCrossRefGoogle Scholar
  54. 42.
    L. T. Creagh and A. R. Kmetz, “Performance Advantages of Liquid Crystal Displays with Surfactant-produced Homogeneous Alignment,” Soc. for Information Display, 1972 International Symp. Dig. Tech. Papers (Lewis Winner, New York), p. 90.Google Scholar
  55. F. J. Kahn, “Orientation of Liquid Crystals by Surface Coupling Agents,” Appl. Phys. Lett., Vol. 22, p. 386 (1973).ADSCrossRefGoogle Scholar
  56. 43.
    G. Assouline, M. Hareng, and E. Leiba, “Liquid Crystal and Photoconductor Image Converter,” Proc. IEEE, Vol. 59, p. 1355 (1971).CrossRefGoogle Scholar
  57. M. Hareng, G. Assouline, and E. Leiba, “Affichage Bicolore à Cristal Liquide (Two Color Liquid-Crystal Display),” Electron. Lett., Vol. 7, p. 699 (1971).CrossRefGoogle Scholar
  58. 44.
    T. Shimojo, K. Matsuda, and K. Kasano, “Singular Electro-Optical Characteristics of Liquid Crystal Display with Interdigital Electrodes,” S.I.D. International Symp. Digest, 1973 (p. 36).Google Scholar
  59. 45.
    R. A. Kashnow, “Thickness Measurements of Nematic Liquid Layers,” Rev. Sci. Inst., Vol. 43, p. 1837 (1972).CrossRefGoogle Scholar
  60. 46.
    J. A. Castellano and M. T. McCaffrey, “Liquid Crystals IV. Electro-Optic Effects in p-alkoxybenzylidene-p′-aminoalkyphenones and Related Compounds,” in Liquid Crystals and Ordered Fluids, ed. J. F. Johnson and R. S. Porter, Plenum Press, New York, p. 293 (1970).Google Scholar
  61. 47.
    U. Bonne and D. P. Cummings, “Properties and Limitations of Liquid Crystals for Aircraft Displays,” Contract #N00014-71-C-0262, ONR Task No. NR 215-173, Honeywell, Inc., Oct. 1972, Chap. VII.Google Scholar
  62. 48.
    G. H. Heilmeier, J. A. Castellano, and L. A. Zanoni, “Guest-Hose Interactions in Nematic Liquid Crystals,” Mol. Cryst. and Liq. Cryst., Vol. 8, p. 293 (1969).CrossRefGoogle Scholar
  63. 49.
    J. Dryer, “Liquid Crystal Optical Devices,” Reported at Second International Liq. Cryst. Conf., Kent, Ohio, 1968.Google Scholar
  64. 50.
    H. DeVries, “Rotary Power and Other Properties of Certain Liquid Crystals,” Acta. Cryst., Vol. 4, p. 219 (1951).CrossRefGoogle Scholar
  65. 51.
    C. B. Burckhardt, M. Schadt, and W. Helfrich, “Holographic Recording with an Electro-Optic Liquid Crystal Cell,” Appl. Optics, Vol. 10, p. 2196 (1971).ADSCrossRefGoogle Scholar
  66. 52.
    D. W. Berreman, “Optics in Smoothly Varying Anisotropic Planar Structures: Application to Liquid-Crystal Twist Cells,” J. Opt. Soc. Am., Vol. 63, p. 1374 (1973).ADSCrossRefGoogle Scholar
  67. 53.
    G. H. Heilmeier, “Some Cooperative Effects in Butyl p-Anisylidene-p-Amino Cinnamate,” in Ordered Fluids and Liquid Crystals, Advances in Chemistry Series #63, p. 68, American Chemical Society, Washington, D.C. (1967).CrossRefGoogle Scholar
  68. A. Takase, S. Sakagami, and M. Nakamizo, “Light Diffraction in a Nematic Liquid Crystal with Positive Dielectric Anisotropy,” Japan J. Appl. Phys., Vol. 12, p. 1255 (1973).ADSCrossRefGoogle Scholar
  69. W. H. DeJeu and C. J. Gerritsma, “Electrohydrodynamic Instabilities in Some Nematic Azoxy Compounds with Dielectric Anisotropies of Different Sign,” J. Chem. Phys., Vol. 56, p. 4752 (1972); and Ref. 4.ADSCrossRefGoogle Scholar
  70. 54.
    R. Williams, “Domains in Liquid Crystals,” J. Chem. Phys., Vol. 39, p. 384 (1963).ADSCrossRefGoogle Scholar
  71. 55.
    P. A. Penz, “Voltage-Induced Vorticity and Optical Focusing in Liquid Crystals,” Phys. Rev. Lett., Vol. 24, p. 1405 (1970).ADSCrossRefGoogle Scholar
  72. 56.
    P. A. Penz and G. W. Ford, “Electromagnetic Hydrodynamics of Liquid Crystals,” Phys. Rev., Vol. 6A, p. 414 (1972).ADSGoogle Scholar
  73. 57.
    H. Greubel and U. Wolff, “Electrically Controllable Domains in Nematic Liquid Crystals,” Appl. Phys. Lett., Vol. 19, p. 213 (1971).ADSCrossRefGoogle Scholar
  74. L. K. Vistin, “New Electrostructural Phenomenon in Liquid Crystals of Nematic type,” Sov. Phys. Crys., Vol. 15, p. 514 (1970).Google Scholar
  75. 58.
    A. Sussman, unpublished results.Google Scholar
  76. 59.
    Orsay Liquid Crystal Group, “Hydrodynamic Instabilities in Nematic Liquids Under ac Electric Fields,” Phys. Rev. Lett., Vol. 25, p. 1642 (1970).ADSCrossRefGoogle Scholar
  77. 60.
    R. A. Kashnow and J. E. Bigelow, “Diffraction from a Liquid Crystal Phase Grating,” Appl. Oplics, Vol. 12, p. 2302 (1973).ADSCrossRefGoogle Scholar
  78. 61.
    Y. Galerne, G. Durand, M. Veyssie, and V. Pontikis, “Electrohydodynamic Instability in a Nematic Liquid Crystal: Effect of an Additional Stabilizing ac Electric Field on the Spatial Period of ‘Chevrons’,” Phys. Lett., Vol. 38A, p. 449 (1972).ADSGoogle Scholar
  79. 62.
    A. Sussman, “Secondary Hydrodynamic Structure in Dynamic Scattering,” Appl. Phys. Lett., Vol. 21, p. 269 (1972).ADSCrossRefGoogle Scholar
  80. 63.
    J. Nehring and M. S. Petty, “The Formation of Threads in the Dynamic Scattering Mode of Nematic Liquid Crystals,” Phys. Lett., Vol. 40A, p. 307 (1972).ADSGoogle Scholar
  81. 64.
    L. Goodman, “Light Scattering in Electric-Field Driven Nematic Liquid Crystals,” Soc. for Information Display 1971 International Symp. Dig. Tech. Papers, (Lewis Winner, New York), p. 124. See also References [31] and [47].Google Scholar
  82. 65.
    L. T. Creagh, “Nematic Liquid Crystal Materials for Displays,” Proc. IEEE, Vol. 61, 814 (1973); and Eastman Liquid Crystal Products, Bulletin JJ-14 (1973).CrossRefGoogle Scholar
  83. 66.
    G. Assouline and E. Leiba, “Cristaux Liquides,” Rev. Tech. CSF, Vol. 1, p. 483 (1969).Google Scholar
  84. 67.
    J. D. Margerum, J. Nimov, and S.-Y. Wong, “Reversible Ultraviolet Imaging with Liquid Crystals,” Appl. Phys. Lett., Vol. 17, p. 51 (1970).ADSCrossRefGoogle Scholar
  85. 68.
    D. H. White and M. Feldman, “Liquid Crystal Light Valves,” Electron Letters, Vol. 6, p. 837 (1970).CrossRefGoogle Scholar
  86. 69.
    J. D. Margerum, T. D. Beard, W. P. Bleha, Jr., and S.-Y. Wong, “Transparent Phase Images in Photoactivated Liquid Crystals,” Appl. Phys. Lett., Vol. 19, p. 216 (1971).ADSCrossRefGoogle Scholar
  87. 70.
    A. D. Jacobson, “Photo-Activated Liquid Crystal Valve,” Soc. for Information Display, 1972 International Symp., Dig. Tech. Papers (Lewis Winner, New York), p. 70.Google Scholar
  88. 71.
    A. Rose, “The Role of Space-Charge-Limited Currents in Photoconductivity-controlled Devices,” IEEE Trans. on Electron Dev., Vol. ED19, p. 430 (1972).CrossRefGoogle Scholar
  89. 72.
    T. O. Beard, W. P. Bleha, and S.-Y. Wong, “AC Liquid Crystal Light Valve,” Appl. Phys. Lett., Vol. 22, p. 90 (1973).ADSCrossRefGoogle Scholar
  90. 73.
    A. Sussman, “Dynamic Scattering Life in the Nematic Compound p-Methoxybenzylidene-p-amino phenyl acetate as Influenced by the Current Density,” Appl. Phys. Lett., Vol. 21, p. 126 (1972).ADSCrossRefGoogle Scholar

Copyright information

© RCA Laboratories 1975

Authors and Affiliations

  • Alan Sussman
    • 1
  1. 1.RCA Solid State DivisionSomervilleUSA

Personalised recommendations