Advertisement

Liquid-Crystal Displays—Electro-Optic Effects and Addressing Techniques

  • L. A. Goodman

Abstract

Many of the physical properties of mesomorphic materials, such as birefringence, optical activity, viscosity, and thermal conductivity are sensitive to relatively weak external stimuli. Electric fields, magnetic fields, heat energy, and acoustical energy can all be used to induce optical effects. At the present time, most of the display-related research is centered on the application of electro-optic effects because of the relative ease and efficiency of excitation with an applied voltage as compared with other means of stimulation. Liquid-crystal electro-optic effects are important because they do not require the emission of light; instead they modify the passage of light through the liquid crystal either by light scattering, modulation of optical density, or color changes. The salient properties are low-voltage operation, very low power dissipation, size and format flexibility, and washout immunity in high-brightness ambients.

Keywords

Liquid Crystal Threshold Voltage Nematic Liquid Crystal Contrast Ratio Cholesteric Liquid Crystal 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    C. W. Oseen, “The Theory of Liquid Crystals,” Trans. Faraday Soc., 2, p. 833 (1933).Google Scholar
  2. 2.
    F. C. Frank, “On the Theory of Liquid Crystals,” Disc. Faraday Soc., 25, p. 19 (1958).Google Scholar
  3. 3.
    P. Sheng, “Introduction to the Elastic Continuum Theory of Liquid Crystals,” Chapter 8.Google Scholar
  4. 4.
    P. deGennes, The Physics of Liquid Crystals, Oxford University Press, London (1974).Google Scholar
  5. 5.
    W. Helfrich, “Electric Alignment of Liquid Crystals,” Mol. Cryst. and Liq. Cryst., 21, p. 187 (1973).Google Scholar
  6. 6.
    H. Gruler, T. J. Scheffer, and G. Meier, “Elastic Constants of Nematic Liquid Crystals I. Theory of the Normal Deformation,” Z. Naturforsch. A, 27a, p. 966 (1972).ADSGoogle Scholar
  7. 7.
    M. F. Shiekel and K. Fahrenschon, “Deformation of Nematic Liquid Crystals with Vertical Orientation in Electrical Fields,” Appl. Phys. Lett., 19, p. 393 (1971).ADSGoogle Scholar
  8. 8.
    F. J. Kahn, “Electric-Field Induced Orientational Deformation of Nematic Liquid Crystals: Tunable Birefringence,” Appl. Phys. Lett., 20, p. 199 (1972).ADSGoogle Scholar
  9. 9.
    R. A. Soref and M. J. Rafuse, “Electrically Controlled Birefringence of Thin Nematic Films,” J. Appl. Phys., 43, p. 2029 (1972).ADSGoogle Scholar
  10. 10.
    H. Mailer, K. L. Likins, T. R. Tayloer, and J. L. Fergason, “Effect of Ultrasound on a Nematic Liquid Crystal,” Appl. Phys. Lett., 18, p. 105 (1971).ADSGoogle Scholar
  11. 11.
    H. Gruler and G. Meier, “Electric Field Induced Deformations in Oriented Liquid Crystals of the Nematic type,” Mol. Cryst. and Liq. Cryst., 16, p. 299 (1972).Google Scholar
  12. 12.
    H. Deuling, “Deformation of Nematic Liquid Crystals in an Electric Field,” Mol. Cryst. and Liq. Cryst. 19, p. 123(1972).Google Scholar
  13. 13.
    L. T. Creagh and A. R. Kmetz, “Mechanism of Surface Alignment in Nematic Liquid Crystals,” Mol. Cryst. and Liq. Cryst., 24, p. 59 (1973).Google Scholar
  14. 14.
    J. Robert and G. Labrunie, “Transient Behavior of the Electrically Controlled Birefringence in a Nematic Liquid Crystal,” J. Appl. Phys., 44, p. 4689 (1973).Google Scholar
  15. 15.
    G. Heilmeier and J. Goldmacher, U.S. Patent No. 3,499,702 (1970).Google Scholar
  16. 16.
    M. Schadt and W. Helfrich, “Voltage Dependent Optical Activity of a Twisted Nematic Liquid Crystal,” Appl. Phys. Lett. 18, p. 127 (1971).ADSGoogle Scholar
  17. 17.
    F. M. Leslie, “Distortion of Twisted Orientation Patterns in Liquid Crystals by Magnetic Fields,” Mol. Cryst. and Liq. Cryst., 12, p. 57 (1970).Google Scholar
  18. 18.
    C. J. Alder and E. P. Raynes, “Room Temperature Nematic Liquid Crystal Mixtures with Positive Dielectric Anisotropy,” J. Phys., D6, p. L33 (1973).ADSGoogle Scholar
  19. 19.
    A. Boller, H. Scherrer, and M. Schadt, “Low Electro-Optic Threshold in New Liquid Crystals,” Proc. IEEE, 60, p. 1002 (1972).Google Scholar
  20. 20.
    A. Ashford, J. Constant, J. Kirton, and E. P. Raynes, “Electro-Optic Performance of a New Room Temperature Nematic Liquid Crystal,” Elec. Lett., 9, p. 118 (1973).Google Scholar
  21. 21.
    R. R. Reynolds, C. Maze and E. P. Oppenheim, “Design Considerations for Positive Dielectric Nematic Mixtures Suitable for Display Applications,” Abstracts of Fifth International Liquid Crystal Conf., Stockholm, Sweden, June 1974, p. 236.Google Scholar
  22. 22.
    C. H. Gooch and H. A. Tarry, “Optical Characteristics of Twisted Nematic Liquid Crystal Films,” Elec. Lett., 10, p. 2 (1974).Google Scholar
  23. 23.
    J. Robert and F. Gharadjedaghi, “Rotation du Plan de Polarisation de la Lumière dans une Structure Nématique en Helice,” C. R. Acad. Sc. Paris, 278B, p. 73 (1974).Google Scholar
  24. 24.
    C. J. Gerritsma, W. H. DeJeu and P. VanZanten, “Distortion of a Twisted Nematic Liquid Crystal by a Magnetic Field,” Phys. Lett., 36A, p. 389 (1971).ADSGoogle Scholar
  25. 25.
    C. Z. VanDoorn, “On the Magnetic Threshold for the Alignment of a Twisted Nematic Crystal,” Phys. Lett., 42A, p. 537 (1973).ADSGoogle Scholar
  26. 26.
    A. I. Baise and M. M. Labes, “Effect of Dielectric Anisotropy on Twisted Nematics,” Appl. Phys. Lett., 24, p. 298(1974).ADSGoogle Scholar
  27. 27.
    D. Meyerhofer, “Electro-optic Properties of Twisted Field Effect Cells,” Abstracts of Fifth International Liquid Crystal Conf., Stockholm, Sweden, June 1974, p. 220.Google Scholar
  28. 28.
    D. W. Berreman, “Optics in Smoothly Varying Anisotropic Planar Structures: Applicated to Liquid Crystal Twist Cells,” J. Opt. Soc. Amer., 63, p. 1374 (1973).ADSGoogle Scholar
  29. 29.
    S. Kobayashi and F. Takeuchi, “Multicolor Field-Effect Display Devices with Twisted Nematic Liquid Crystals,” Proc. of S.I.D., 14, p. 115 (1973).Google Scholar
  30. 30.
    C. Z. VanDoorn and J. L. A. M. Heldens, “Angular Dependent Optical Transmission of Twisted Nematic Liquid Crystal Layers,” Phys. Lett., 47A, p. 135 (1974).ADSGoogle Scholar
  31. 31.
    F. Brochard, “Backflow Effects in Nematic Liquid Crystals,” Mol. Cryst. and Liq. Cryst., 23, p. 51 (1973).Google Scholar
  32. 32.
    C. J. Gerritsma, J. A. Geurst and A. M. J. Spruijt, “Magnetic-Field-Induced Motion of Disclinations in a Twisted Nematic Layer,” Phys. Lett., 43A, p. 356 (1973).ADSGoogle Scholar
  33. 33.
    E. P. Raynes, “Twisted Nematic Liquid Crystal Electro-Optic Devices with Areas of Reverse Twist,” Elec. Lett., 9, p. 101 (1973).Google Scholar
  34. 34.
    E. P. Raynes, “Improved Contrast Uniformity in Twisted Nematic Liquid Crystal Electro-Optic Display Devices,” Elec. Lett., 10, p. 141 (1974).Google Scholar
  35. 35.
    P. J. Wild, “Twisted Nematic Liquid Crystal Displays with Low Threshold Voltage,” Comptes Rendus des Journées d’Electronique, EPFL, p. 102 (1973).Google Scholar
  36. 36.
    G. H. Heilmeier and L. A. Zanoni, “Guest-Host Interactions in Nematic Liquid Crystals—A New Electro-Optic Effect,” Appl. Phys. Lett., 13, p. 91 (1968).ADSGoogle Scholar
  37. 37.
    G. H. Heilmeier, J. A. Castellano, and L. A. Zanoni, “Guest-Host Interactions in Nematic Liquid Crystals,” Mol. Cryst. and Liq. Cryst., 8, p. 293 (1969).Google Scholar
  38. 38.
    J. J. Wysocki, J. Adams, and W. Haas, “Electric-Field-Induced Phase Change in Cholesteric Liquid Crystals,” Phys. Rev. Lett., 20, p. 1024 (1968).ADSGoogle Scholar
  39. 39.
    E. Sackmann, S. Meiboom and L. C. Snyder, “On the Relation of Nematic to Cholesteric Mesophases,” J. Am. Chem. Soc., 89, p. 5981 (1967).Google Scholar
  40. 40.
    P. G. deGennes, “Calcul de la Distortion D’une Structure Cholesterique Par un Champ Magnetique,” Sol. St. Commun., 6, p. 163 (1968).ADSGoogle Scholar
  41. 41.
    R. B. Meyer, “Effects of Electric and Magnetic Fields on the Structures of Cholesteric Liquid Crystals,” Appl. Phys. Lett., 12, p. 281 (1968).ADSGoogle Scholar
  42. 42.
    F. Rondelez and J. P. Hulin, “Distortions of a Planar Cholesteric Structure Induced by a Magnetic Field,” Sol. St. Commun., 10, p. 1009 (1972).ADSGoogle Scholar
  43. 43.
    F. J. Kahn, “Electric-Field-Induced Color Changes and Pitch Dilation in Cholesteric Liquid Crystals,” Phys. Rev. Lett., 24, p. 209 (1969).ADSGoogle Scholar
  44. 44.
    R. B. Meyer, “Distortion of a Cholesteric Structure by a Magnetic Field,” Appl. Phys. Lett., 14, p. 208(1969).ADSGoogle Scholar
  45. 45.
    G. Durand, L. Leger, F. Rondelez and M. Veyssie, “Magnetically Induced Cholesteric-to-Nematic Phase Transition in Liquid Crystals,” Phys. Rev. Lett., 22, p. 227 (1969).ADSGoogle Scholar
  46. 46.
    G. H. Heilmeier and J. E. Goldmacher, “Electric-Field-Induced Cholesteric-Nematic Phase Change in Liquid Crystals,” J. Chem. Phys., 51, p. 1258 (1969).ADSGoogle Scholar
  47. 47.
    G. W. Gray, K. J. Harrison and J. A. Nash, “New Family of Nematic Liquid Crystals for Displays,” Elec. Lett., 9, p. 130(1973).Google Scholar
  48. 48.
    J. P. Hulin, “Parametric Study of the Optical Storage Effect in Mixed Liquid Crystal Systems,” Appl. Phys. Lett., 21, p. 455 (1972).ADSGoogle Scholar
  49. 49.
    W. Helfrich, “Deformation of Cholesteric Liquid Crystals with Low Threshold Voltage,” Appl. Phys. Lett., 17, p. 531 (1970).Google Scholar
  50. 50.
    W. Helfrich, “Electrohydrodynamic and Dielectric Instabilities of Cholesteric Liquid Crystals,” J. Chem. Phys. 55, p. 839 (1971).ADSGoogle Scholar
  51. 51.
    J. Hurault, “Static Distortions of a Cholesteric Planar Structure Induced by Magnetic or A.C. Electric Fields,” Fourth International Liquid Crystal Conf., Kent, Ohio, Aug. 1972.Google Scholar
  52. 52.
    C. J. Gerritsma and P. VanZanten, “Periodic Perturbations in the Cholesteric Plane Texture,” Phys. Lett., 37A, p. 47 (1971).ADSGoogle Scholar
  53. 53.
    T. J. Scheffer, “Electric and Magnetic Field Investigations of the Periodic Gridlike Deformation of a Cholesteric Liquid Crystal,” Phys. Rev. Lett. 28, p. 598 (1972).ADSGoogle Scholar
  54. 54.
    F. Rondelez, H. Arnould and C. J. Gerritsma, “Electrohydrodynamic Effects in Cholesteric Liquid Crystals Under AC Electric Fields,” Phys. Rev. Lett., 28, p. 735 (1972).ADSGoogle Scholar
  55. 55.
    J. J. Wysocki et al., “Cholesteric-Nematic Phase Transition Displays,” Proc. SID, 13, p. 115 (1972).Google Scholar
  56. 56.
    T. Ohtsuka and M. Tsukamoto, “AC Electric-Field-Induced Cholesteric-Nematic Phase Transition in Mixed Liquid Crystal Films,” Jap. J. Appl. Phys., 12, p. 22 (1973).ADSGoogle Scholar
  57. 57.
    W. F. Greubel, “Bistability Behavior of Texture in Cholesteric Liquid Crystals in an Electric Field,” Appl. Phys. Lett., 25, p. 5 (1974).ADSGoogle Scholar
  58. 58.
    D. L. White and G. N. Taylor, “A New Absorptive Mode Reflective Liquid Crystal Display Device,” J. Appl. Phys., 45, p. 4718 (1974).ADSGoogle Scholar
  59. 59.
    G. H. Heilmeier, L. A. Zanoni and L. A. Barton, “Dynamic Scattering in Nematic Liquid Crystals,” Appl. Phys. Lett., 13, p. 46 (1968).ADSGoogle Scholar
  60. 60.
    G. H. Heilmeier, L. A. Zanoni and L. A. Barton, “Dynamic Scattering: A New Electro-Optic Effect in Certain Classes of Nematic Liquid Crystals,” Proc. IEEE, 56, p. 1162 (1968).Google Scholar
  61. 61.
    C. Deutsch and P. N. Keating, “Scattering of Coherent Light from Nematic Liquid Crystals in the Dynamic Scattering Mode,” J. Appl. Phys., 40, p. 4049 (1969).ADSGoogle Scholar
  62. 62.
    W. Helfrich, “Conduction-Induced Alignment of Nematic Liquid Crystals: Basic Model and Stability Considerations,” J. Chem. Phys., 51, p. 4092 (1969).ADSGoogle Scholar
  63. 63.
    E. F. Carr, “Ordering in Liquid Crystals Owing to Electric and Magnetic Fields,” Advan. Chem. Ser., 63, p. 76(1967).Google Scholar
  64. 64.
    R. Williams, “Domains in Liquid Crystals,” J. Chem. Phys., 39, p. 384 (1963).ADSGoogle Scholar
  65. 65.
    P. A. Penz, “Voltage-Induced Vorticity and Optical Focusing in Liquid Crystals,” Phys. Rev. Lett., 24, p. 1405(1970).ADSGoogle Scholar
  66. 66.
    T. O. Carroll, “Liquid Crystal Diffraction Grating,” J. Appl. Phys., 43, p. 767 (1972).ADSGoogle Scholar
  67. 67.
    G. Assouline, A. Dmitrieff, M. Hareng, and E. Leiba, “Diffraction d’un Faisceau Laser par un Cristal Liquide Nématique Soumis à un Champ Électrique,” C. R. Acad. Sci. Paris, 271B, p. 857 (1970).Google Scholar
  68. 68.
    E. Dubois-Vilette, P. G. deGennes, and O. Parodi, “Hydrodynamic Instabilities of Nematic Liquid Crystals Under AC Electric Fields,” J. Physique, 32, p. 305 (1971).Google Scholar
  69. 69.
    Orsay Liquid Crystal Group, “Hydrodynamic Instabilities in Nematic Liquids Under AC Electric Fields,” Phys. Rev. Lett., 25, p. 1642 (1970).ADSGoogle Scholar
  70. 70.
    P. G. deGennes, “Electrohydrodynamic Effects in Nematics,” Comments Sol. St. Phys., 3, p. 148 (1971).Google Scholar
  71. 71.
    R. A. Kashnow and H. S. Cole, “Electrohydrodynamic Instabilities in a High-Purity Nematic Liquid Crystal,” J. Appl. Phys., 42, p. 2134 (1971).ADSGoogle Scholar
  72. 72.
    P. A. Penz and G. W. Ford, “Electrohydrodynamic Solutions for Nematic Liquid Crystals,” Appl. Phys. Lett., 20, p. 415 (1972).ADSGoogle Scholar
  73. 73.
    P. A. Penz and G. W. Ford, “Electromagnetic Hydrodynamics of Liquid Crystals,” Phys. Rev., 6A, p. 414(1972).ADSGoogle Scholar
  74. 74.
    D. Meyerhofer, “Electro Hydrodynamic Instabilities in Nematic Liquid Crystals,” Chapter 9.Google Scholar
  75. 75.
    T. O. Carroll, “Dependence of Conduction-Induced Alignment of Nematic Liquid Crystals Upon Voltage Above Threshold,” J. Appl. Phys., 43, p. 1342 (1972).ADSGoogle Scholar
  76. 76.
    L. Goodman, “Light Scattering in Electric-Field Driven Nematic Liquid Crystals,” Proc. SID, 13, p. 121 (1972).Google Scholar
  77. 77.
    L. Cosentino, “On the Transient Scattering of Light by Pulsed Liquid Crystal Cells,” IEEE Trans. Electron Devices, ED-1, p. 1192(1971).Google Scholar
  78. 78.
    L. Creagh, A. Kmetz and R. Reynolds, “Performance Characteristics of Nematic Liquid Crystal Display Devices,” IEEE Trans. Electron Devices, ED-18, p. 672 (1971).Google Scholar
  79. 79.
    W. F. Greubel and U. W. Wolff, “Electrically Controllable Domains in Nematic Liquid Crystals,” Appl. Phys. Lett., 19, p. 213 (1971).ADSGoogle Scholar
  80. 80.
    W. H. DeJeu, C. J. Gerritsma, and A. M. VanBoxtel, “Electrohydrodynamic Instabilities in Nematic Liquid Crystals,” Phys. Lett., 34A, p. 203 (1971).ADSGoogle Scholar
  81. 81.
    L. K. Vistin, “Electrostructural Effect and Optical Properties of a Certain Class of Liquid Crystals and Their Binary Mixtures,” Sov. Phys. Crystallogr., 15, p. 514 (1970).Google Scholar
  82. 82.
    N. Felici, “Phénomènes Hydro et Áerodynamiques dans la Conduction des Dielectrique Fluide,” Rev. Gen. Elec., 78, p. 717 (1969).Google Scholar
  83. 83.
    Orsay Liquid Crystal Group, “AC and DC Regimes of the Electrohydrodynamic Instabilities in Nematic Liquid Crystals,” Mol. Cryst. and Liq. Cryst., 12, p. 251 (1971).Google Scholar
  84. 84.
    H. Koelmans and A. M. VanBoxtel, “Electrohydrodynamic Flow in Nematic Liquid Crystals,” Mol. Cryst. and Liq. Cryst., 12, p. 185 (1971).Google Scholar
  85. 85.
    D. Meyerhofer and A. Sussman, “The Electrohydrodynamic Threshold in Nematic Liquid Crystals in Low Frequency Fields,” Appl. Phys. Lett., 20, p. 337 (1972).ADSGoogle Scholar
  86. 86.
    A. Sussman, “Electro-Optic Liquid Crystal Devices: Principles and Applications,” IEEE Trans. Parts, Hybrids and Packaging, PHP-8, p. 28 (1972).Google Scholar
  87. 87.
    G. Durand, M. Veyssie, F. Rondelez and L. Leger, “Effect Électrohydrodynamique dans un Cristal Liquide Nématique,” C. R. Acad. Sc. Paris, 270B, p. 97 (1970).Google Scholar
  88. 88.
    G. H. Heilmeier and J. E. Goldmacher, “A New Electric Field Controlled Reflective Optical Storage Effect in Mixed Liquid Crystal Systems,” Proc. IEEE 57, p. 34 (1969).Google Scholar
  89. 89.
    G. Dir et al., “Cholesteric Liquid Crystal Texture Change Displays,” Proc. SID, 13, p. 105 (1972).Google Scholar
  90. 90.
    D. Meyerhofer and E. F. Pasierb, “Light Scattering Characteristics in Liquid Crystal Storage Materials,” Mol. Cryst. and Liq. Cryst., 20, p. 279 (1973).Google Scholar
  91. 91.
    E. Jakeman and E. P. Raynes, “Electro-Optic Response Times in Liquid Crystals,” Phys. Lett., 39A, p. 69(1972).ADSGoogle Scholar
  92. 92.
    J. Robert, G. Labrunie and J. Borel, “Static and Transient Electric Field Effect on Homeotropic Thin Layers,” Mol. Cryst. and Liq. Cryst., 23, p. 197 (1973).Google Scholar
  93. 93.
    A. Sussman, “Secondary Hydrodynamic Structure in Dynamic Scattering,” Appl. Phys. Lett, 21, p. 269(1972).ADSGoogle Scholar
  94. 94.
    C. J. Gerritsma, C. Z. VanDoorn and P. VanZanten, “Transient Effects in the Electrically Controlled Light Transmission of a Twisted Nematic Layer,” Phys. Lett., 48A, p. 263 (1974).ADSGoogle Scholar
  95. 95.
    C. H. Gooch and H. A. Tarry, “Dynamic Scattering in the Homeotropic and Homogeneous Textures of a Nematic Liquid Crystal,” J. of Phys. D. Appl. Phys., 5, p. L25 (1972).ADSGoogle Scholar
  96. 96.
    B. J. Lechner, F. Marlowe, E. Nester, and J. Tults, “Liquid Crystal Displays,” Proc. IEEE, 59, p. 1566(1971).Google Scholar
  97. 97.
    W. H. DeJeu, C. J. Gerristma, P. VanZanten, and W. J. A. Gossens, “Relaxation of the Dielectric Constant Electrohydrodynamic Instabilities in a Liquid Crystal,” Phys. Lett, 39A, p. 355 (1972).ADSGoogle Scholar
  98. 98.
    H. K. Bücher, R. T. Klingbiel, and J. P. VanMeter, “Frequency-Addressed Liquid Crystal Field Effect,” Appl. Phys. Lett., 25, p. 186 (1974).ADSGoogle Scholar
  99. 99.
    E. P. Raynes and I. A. Shanks, “Fast Switching Twisted Nematic Electro-Optical Shutter and Color-Filter,” Elec. Lett., 10, p. 114 (1974).Google Scholar
  100. 100.
    T. S. Chang and E. E. Loebner, “Crossover Frequencies and Turn-Off Time Reduction Scheme for Twisted Nematic Liquid Crystal Displays,” Appl. Phys. Lett., 25, p. 1 (1974).ADSGoogle Scholar
  101. 101.
    G. Baur, A. Stieb, and G. Meier, “Controlled Decay of Electrically Induced Deformations in Nematic Liquid Crystals,” Appl. Phys., 2, p. 349 (1973).ADSGoogle Scholar
  102. 102.
    B. Kellenevich and A. Coche, “Relaxation of Light Scattering in Nematic-Cholesteric Mixtures,” Mol. Cryst. and Liq. Cryst., 24, p. 113 (1973).Google Scholar
  103. 103.
    A. Sussman, “Dynamic Scattering Life in the Nematic Compound p-Methoxybenzylidene-p-Amino Phenyl Acetate as Influenced by Current Density,” Appl. Phys. Lett., 21, p. 126 (1972).ADSGoogle Scholar
  104. 104.
    L. Pohl, R. Steinsträsser, and B. Hampel, “Performance of Nematic Phase V and VA in Liquid Crystal Displays,” Fourth Internat. Liq. Cryst. Conf., Kent, Ohio; Aug. 1972, Paper No. 144.Google Scholar
  105. 105.
    I. Haller, “Elastic Constants of the Nematic Liquid Crystalline Phase of p-Methoxybenzylidene-p-n-Butylaniline (MBBA),” J. Chem. Phys., 57, p. 1400 (1972).ADSGoogle Scholar
  106. 106.
    A. Sussman, “Electrochemistry in Nematic Liquid-Crystal Solvents,” Chapter 17.Google Scholar
  107. 107.
    A. R. Kmetz, “Liquid Crystal Displays Prospects in Perspective,” IEEE Trans. Elec. Dey., ED-20, p. 954(1973).Google Scholar
  108. 108.
    M. Hareng, G. Assouline and E. Leiba, “La Biréfringence Électriquement Contrôlée dans les Cristaux Liquides Nématiques,” Appl. Opt, 11 p. 2920 (1972).ADSGoogle Scholar
  109. 109.
    P. M. Alt and P. Pleshko, “Scanning Limitations of Liquid Crystal Displays,” IEEE Trans. Elec. Dev., ED-21, p. 146(1974).Google Scholar
  110. 110.
    H. Takata, O. Kogure, and K. Murase, “Matrix-Addressed Liquid Crystal Display,” IEEE Trans. Elec. Dev., ED-20, p. 990 (1973).Google Scholar
  111. 111.
    M. Hareng, G. Assouline, and E. Leiba, “Liquid Crystal Matrix Display by Electrically Controlled Birefringence,” Proc. IEEE, 60, p. 913 (1972).Google Scholar
  112. 112.
    M. F. Schiekel and K. Fahrenschon, “Multicolor Matrix Displays Based on Deformation of Vertically Aligned Nematic Liquid Crystal Phases,” Digest 1972 Soc. for Information Display International Symp., San Francisco, Calif., p. 98.Google Scholar
  113. 113.
    T. Ohtsuka, M. Tsukamoto, and M. Tsuchiya, “Liquid Crystal Matrix Display,” Jap. J. Appl. Phys., 12, p. 371(1973).ADSGoogle Scholar
  114. 114.
    C. R. Stein and R. A. Kashnow, “A Two Frequency Coincidence Addressing Scheme for Nematic Liquid Crystal Displays,” Appl. Phys. Lett., 19, p. 343 (1971).ADSGoogle Scholar
  115. 115.
    P. J. Wild and J. Nehring, “An Improved Matrix Addressed Liquid Crystal Display,” Appl. Phys. Lett., 19, p. 335(1971).ADSGoogle Scholar
  116. 116.
    C. R. Stein and R. A. Kashnow, “Recent Advances in Frequency Coincidence Matrix Addressing of Liquid Crystal Displays,” Digest 1972 Soc. for Information Display International Symp., San Francisco, Calif. p. 64.Google Scholar
  117. 117.
    M. Schadt, “Dielectric Properties of Some Nematic Liquid Crystals with Strong Positive Dielectric Anisotropy,” J. Chem. Phys., 56, p. 1494 (1972).ADSGoogle Scholar
  118. 118.
    A. G. Fischer, T. P. Brody, and W. S. Escott, “Design of a Liquid Crystal Color TV Panel,” IEEE Conf. Record 1972 Conf. on Display Devices, New York, NY, p. 64.Google Scholar
  119. 119.
    T. P. Brody, J. Asars and G. D. Dixon, “A 6 × 6 Inch 20 Lines per Inch Liquid Crystal Display Panel,” IEEE Trans. Elec. Dev., ED-20, p. 995 (1973).Google Scholar
  120. 120.
    T. F. Brody, F. C. Luo, D. H. Vavies, and E. W. Greeneich, “Operational Characteristics of a 6 × 6 Inch, TFT Matrix Array, Liquid Crystal Display,” Digest 1974 Soc. for Information Display International Symp., San Diego, Calif., p. 166.Google Scholar
  121. 121.
    L. Lipton and N. Koda, “Liquid Crystal Matrix Display for Video Applications,” Proc. SID, 14, p. 127(1973).Google Scholar
  122. 122.
    M. Ernstoff, A. M. Leupp, M. J. Little and H. T. Peterson, “Liquid Crystal Pictorial Display,” Technical Digest 1973 International Electron Devices Meeting, Washington, D.C., p. 548.Google Scholar
  123. 123.
    J. A. van Raalte, “Reflective Liquid Crystal Television Display,” Proc. IEEE, 56, p. 2146 (1968).Google Scholar
  124. 124.
    C. H. Gooch et al., “A Storage Cathode-Ray Tube with Liquid Crystal Display,” J. Phys., D6, p. 1664(1974).ADSGoogle Scholar
  125. 125.
    C. Burrowes, “Electrical Fiber Plates—A New Tool For Storage and Display,” IEEE Conf. Record 1970 IEEE Conf. on Display Devices, New York, NY, p. 126.Google Scholar
  126. 126.
    J. D. Margerum, J. Nimoy and S.-Y. Wong, “Reversible Ultraviolet Imaging with Liquid Crystals,” Appl. Phys. Lett., 17, p. 51 (1970).ADSGoogle Scholar
  127. 127.
    D. L. White and M. Feldman, “Liquid Crystal Light Valves,” Elec. Lett., 6, p. 837 (1970).Google Scholar
  128. 128.
    G. Assouline, M. Hareng, and E. Leiba, “Liquid Crystal and Photoconductor Image Converter,” Proc. IEEE, 59, p. 1355 (1971).Google Scholar
  129. 129.
    A. Jacobson et al., “Photoactivated Liquid Crystal Light Valve,” Digest 1972 SID International Symp., San Francisco, Calif., p. 70.Google Scholar
  130. 130.
    W. Haas, J. Adams, G. Dir and C. Mitchell, “Liquid Crystal Memory Panels,” Proc. SID, 14, p. 121 (1973).Google Scholar
  131. 131.
    T. D. Beard, W. P. Bleha and S.-Y. Wong, “Alternating Current Liquid Crystal Light Valve,” Appl. Phys. Lett., 22, p. 90 (1973).ADSGoogle Scholar
  132. 132.
    W. P. Bleha, J. Grinberg, and A. D. Jacobson, “AC Driven Photoactivated Liquid Crystal Light Valve,” Digest 1973 SID International Symp., New York, NY, p. 42.Google Scholar
  133. 133.
    J. Grinberg et al., “Photoactivated Liquid Crystal Light Valve for Color Symbology Display,” Conf. Record 1974 IEEE-SID Conf. on Display Devices and Systems, New York, p. 47.Google Scholar
  134. 134.
    D. Maydan, H. Melchior and F. Kahn, “Thermally Addressed Electrically Erased High-Resolution Liquid Crystal,” Appl. Phys. Lett., 21, p. 392 (1972).ADSGoogle Scholar
  135. 135.
    R. A. Soref, “Thermo-Optic Effects in Nematic-Cholesteric Mixtures,” J. Appl. Phys., 41, p. 3022(1970).ADSGoogle Scholar
  136. 136.
    F. J. Kahn, “IR-Laser-Addressed Thermo-Optic Smectic Liquid Crystal Storage Displays,” Appl. Phys. Lett., 22, p. 111 (1973).ADSGoogle Scholar

Copyright information

© RCA Laboratories 1975

Authors and Affiliations

  • L. A. Goodman
    • 1
  1. 1.RCA LaboratoriesPrincetonUSA

Personalised recommendations