Advertisement

Material Analysis by Means of Nuclear Reactions

  • Eligius A. Wolicki

Abstract

The use of nuclear reactions for surface analyses is a field in which a wealth of interesting opportunities exists for small accelerator groups. The field is exciting and interesting both from the scientific standpoint of understanding the fundamental processes involved and from the specific applications which are still being developed. Important early contributions in this field may be found in references 1–9. Interest in the field, spurred perhaps in part by the advent of high resolution solid state detectors for charged particles and gamma rays and of improved data processing equipment, has increased to the point where entire conferences are now devoted to nuclear reaction analysis techniques which utilize charged particle bombardment (10–l6).

Keywords

Nuclear Reaction Alpha Particle Reaction Cross Section Depth Resolution Residual Nucleus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    E. Odelblad, Acta. Radiol. 45, 396 (1956).CrossRefGoogle Scholar
  2. 2.
    S. Rubin, T.O. Passei, and L.E. Bailey, Anal. Chem. 29, 736 (1957).CrossRefGoogle Scholar
  3. 3.
    R.A. Gill, U.K. Atomic Energy Research Establishment, Harwell, England, Report No. AERE C/R 2758 (1958).Google Scholar
  4. 4.
    R.F. Lippel and E.D. Glover, Nuc. Inst. & Meth. 9, 37 (1960).ADSCrossRefGoogle Scholar
  5. 5.
    J.A.B. Heslop, U.K. Admiralty Materials Laboratory, Report No. A/58(M) April 1961.Google Scholar
  6. 6.
    J.W. Winchester and M.L. Bottons, Anal. Chem. 22, 472 (1961).CrossRefGoogle Scholar
  7. 7.
    P. Albert, Proceedings of the 1961 International Conference on Modem Trends in Activation Analysis, Texas A&M University, College Station, Texas, Dec. 15 and l6, 1961.Google Scholar
  8. 8.
    S.S. Markowitz and J.O. Mahony, Anal. Chem. 34, 329 (1962).CrossRefGoogle Scholar
  9. 9.
    G. Amsel and D. Samuel, J. Phys. Chem. Solids, 23, 1707 (1962).ADSCrossRefGoogle Scholar
  10. 10.
    J.P. Guinn, ed., Proceedings of the 1965 International Conference on Modern Trends in Activation Analysis College Station, Texas, Apr. 19–22, 1965, Texas A&M U., College Station, Texas, 1965.Google Scholar
  11. 11.
    Proceedings of the First Conference on Practical Aspects of Activation Analysis with Charged Particles, Grenoble, France, June 23, 1965, Euratom, EUR 2957 d-f-e.Google Scholar
  12. 12.
    R.S. Tilbury, “Activation Analysis with Charged Particles,” Nat. Acad. Sci., Nat. Res. Council Nuclear Science Series, NAS-NS 3110, Clearinghouse for Federal Scientific and Technical Information, Springfield, Va., 1966.Google Scholar
  13. 13.
    H.G. Ebert, ed., Proceedings of the 2nd Conference on Practical Aspects of Activation Analysis with Charged Particles, Liege, Belgium, Sept. 21–22, 1967, Euratom, EUR 3896 d-f-e.Google Scholar
  14. 14.
    J.R. DeVoe, ed., Modern Trends in Activation Analysis, NBS Special Publication 312, Vols. 1 and 2, Government Printing Office, Wash., D.C. 1969.Google Scholar
  15. 15.
    G. Deconninck, G. Demortier, and F. Bodart, eds., Chemical Analysis by Charged Particle Bombardment, Proceedings of the International Meeting, Namur, Belgium, 6–8 Sept. 1971, Elsevier Sequoia S.A., Lausanne (1972).Google Scholar
  16. 16.
    Proceedings of the International Conference on Modern Trends in Activation Analysis, C.E.N. Saclay, France 2–6 Oct. 1972, J. Radioanal. Chem. l6, # 2 (1973).Google Scholar
  17. 17.
    F.F. Dyer, L.C. Bate, and J.E. Strain, Anal. Chem. 39, 1907 (1967).CrossRefGoogle Scholar
  18. 18.
    R.H. Marsh and W. Allie, Jr., Ref. 14, pg. 1285.Google Scholar
  19. 19.
    E.E. Wicker, “Activation Analysis,” Chapter 3 in Determination of Gaseous Elements in Metals, L.M. Melnick, L.C. Lewis, and B.D. Holt, eds., Wiley Interscience, New York 1974.Google Scholar
  20. 20.
    P. Kruger, Principles of Activation Analysis, John Wiley & Sons, Inc., 1971, Pg. 308.Google Scholar
  21. 21.
    J.F. Cosgrove, Ref. 14, pg. 457.Google Scholar
  22. 22.
    E. Ricci and R.L. Hahn, Anal. Chem., 37, 742 (1965).CrossRefGoogle Scholar
  23. 23.
    J.W. Butler and E.A. Wolicki, “Surface Analysis of Gold and Platinum Disks by Activation Methods and by Prompt Radiation from Nuclear Reactions,” in Ref. 14, Vol. II, pg. 791.Google Scholar
  24. 24.
    C. Williamson, J. Borojot, and J. Picard, Tables of Charged Particle Energy Losses, CEA-R3042, 1966.Google Scholar
  25. 25.
    E. Ricci and R.L. Hahn, Anal. Chem., 39, 794 (1967).CrossRefGoogle Scholar
  26. 26.
    C.E. Crouthamel, F. Adams, and R. Dams, Applied Gamma-Ray Spectrometry, Pergamon Press, New York (1970).Google Scholar
  27. 27.
    G.J. Lutz, R.J. Boreni, R.S. Maddock, and W.W. Meinke, eds., Activation Analysis, A Bibliography, Tech. Note 467, Pts. 1 and 2 National Bureau of Standards, Wash., D.C., 1971.Google Scholar
  28. 28.
    J.C. Ritter, M.N. Robinson, B.J. Faraday and J.I. Hoover, J. Phys. Chem. Solids, 26, 721 (1965).ADSCrossRefGoogle Scholar
  29. 29.
    C.A. Carosella and J. Comas, Surface Sci., 15, 303 (1969).ADSCrossRefGoogle Scholar
  30. 30.
    R.W. Benjamin, L.D. England, K.R. Blake, I.L. Morgan, and CD. Houston, Trans. Amer. Nucl. Soc., 9, 104 (1966).Google Scholar
  31. 31.
    D.M. Holm, J.A. Basmajian, and W.M. Sanders, “Observations of the Microscopic Distribution of Oxygen and Carbon in Metals by He3 Activation,” Rept. LA-3515, Los Alamos Scientific Laboratory, 1966.Google Scholar
  32. 32.
    J.B. Holt and L. Himmel, J. Electrochem. Soc. 116, 1569 (1969).CrossRefGoogle Scholar
  33. 33.
    P.E. Wilkniss and H.J. Born, Int. J. Appl. Rad. Isot. 18, 57 (1967).CrossRefGoogle Scholar
  34. 34.
    J.-N. Barrandon and Ph. Albert, “Determination of Oxygen Present at the Surface of Metals by Irradiation with 2 MeV Tritons,” in Ref. 14, Vol. II, pg. 794.Google Scholar
  35. 35.
    A.R. Knudson and K.L. Dunning, Anal. Chem., 44, 1053(1972).CrossRefGoogle Scholar
  36. 36.
    N.N. Krasnov, L.O. Konstantinov, and V.V. Malukhin, J. Radio-anal. Chem. 16, 439 (1973).CrossRefGoogle Scholar
  37. 37.
    K.L. Dunning, G.K. Hubler, J. Comas, W.H. Lucke, and H.L. Hughes, Thin Solid Films 19, 145 (1973); see also Ref. 48, pg. 145.ADSCrossRefGoogle Scholar
  38. 38.
    W.D. Mackintosh and F. Brown, “Movement of Ions During Anodic Oxidation of Aluminum,” in Applications of Ion Beams to Metals, S.T. Picraux, E.P. Eernisse, and F.L. Vook, eds., Plenum Press, New York (1974), Pg. 111.CrossRefGoogle Scholar
  39. 39.
    R. Pretorius, F. Odendaal, and M. Peisach, J. Radioanal. Chem. 12, 139 (1972).CrossRefGoogle Scholar
  40. 40.
    T. Lauritsen and F. Ajzenberg-Selove, Nuc. Phys. 78, 1 (1966).ADSCrossRefGoogle Scholar
  41. 41.
    F. Ajzenberg-Selove and T. Lauritsen, Nuc. Phys. 114, 1 (1968).ADSCrossRefGoogle Scholar
  42. 42.
    F. Ajzenberg-Selove, Nuc. Phys. 152, 1 (1970);ADSCrossRefGoogle Scholar
  43. 42.
    F. Ajzenberg-Selove, Nuc. Phys. 166, 1 (1971);ADSCrossRefGoogle Scholar
  44. 42.
    F. Ajzenberg-Selove, Nuc. Phys. A190, 1 (1972).ADSGoogle Scholar
  45. 43.
    P.M. Endt and C. Van der Leun, Nuc. Phys. A214, 1 (1973).ADSGoogle Scholar
  46. 44.
    D.J. Horen et al., Nuclear Data Sheets 11, ii (1974).CrossRefGoogle Scholar
  47. 45.
    J.R. Bird, B.L. Campbell, and P.B. Price, Atomic Energy Review 12, 275 (1974).Google Scholar
  48. 46.
    S.T. Picraux, G. Amsel, and L. Feldman, “Low Energy Nuclear Reaction Tables,” in Catania Working Data: A Compilation of Tables, Graphs and Formulas for Ion Beam Analysis, to be published.Google Scholar
  49. 47.
    G. Amsel, J. Radioanal. Chem. 17, 15 (1973).CrossRefGoogle Scholar
  50. 48.
    J.W. Mayer and J.F. Ziegler eds., Ion Beam Surface Layer Analysis, Elsevier Sequoia S.A. Lausanne, Switzerland (1974).Google Scholar
  51. 49.
    J.A. Cookson and F.D. Pilling, “A 3 MeV Proton Beam of Less Than Four Microns Diameter,” AERE-R-6300, Harwell, 1970.Google Scholar
  52. 50.
    T.B. Pierce, J.W. McMillan, P.F. Peck and G. Jones, Nuc. Inst. & Meth. 118, 115 (1974).ADSCrossRefGoogle Scholar
  53. 51.
    T. Joy and D.G. Barnes, Nucl. Inst. & Meth. 95, 199 (1971).ADSCrossRefGoogle Scholar
  54. 52.
    D.A. Close, J.J. Malanify and C.J. Umbarger, Nuc. Inst. & Meth. 113, 561 (1973).ADSCrossRefGoogle Scholar
  55. 53.
    G.E. Coote, N.E. Whitehead, and G.J. McCallum, J. Radioanal. Chem. 12, 491 (1972).CrossRefGoogle Scholar
  56. 54.
    G. Deconninck, J. Radioanal. Chem. 12, 157 (1972); also Ref. 15, pg. 157.CrossRefGoogle Scholar
  57. 55.
    G. Deconninck and G. Demortier, J. Radioanal, 12, 189 (1972); also Ref. 15, pg. 189.CrossRefGoogle Scholar
  58. 56.
    G. Demortier and F. Bodart, J. Radioanal. Chem. 12, 209 (1972); also Ref. 15, pg. 209.CrossRefGoogle Scholar
  59. 57.
    P.H. Stelson and F.K. McGowan, Phys. Rev. 110, 489 (1958).ADSCrossRefGoogle Scholar
  60. 58.
    M. Peisach, J. Radioanal. Chem. 12, 251 (1972); also Ref. 15, pg. 251.CrossRefGoogle Scholar
  61. 59.
    O.V. Anders, Anal. Chem. 38, 1442 (1966).CrossRefGoogle Scholar
  62. 60.
    G. Amsel, J.P. Nadai, E. D’Artemare, D. David, E. Girard, and J. Moulin, Nuc. Inst. & Meth. 92, 481 (1971).ADSCrossRefGoogle Scholar
  63. 61.
    E.A. Wolicki and A.R. Knudson, Int. J. Appl. Rad. Isot. 18, 429 (1967).CrossRefGoogle Scholar
  64. 62.
    G. Weber and L. Quaglia, J. Radioanal. Chem. 12, 323 (1972); also Ref. 15, pg. 323.CrossRefGoogle Scholar
  65. 63.
    C. Olivier and M. Peisach, J. Radioanal. Chem. 12, 313 (1972); also Ref. 15, pg. 313.CrossRefGoogle Scholar
  66. 64.
    M. Peisach and R. Pretorius, J. Radioanal. Chem. l6, 559 (1973).CrossRefGoogle Scholar
  67. 65.
    R. Pretorius, Radiochem. Radioanal. Lett. 10, 303 (1972).Google Scholar
  68. 66.
    R. Pretorius, P.P. Coetzee, and M. Peisach, J. Radioanal. Chem. 16, 551 (1973).CrossRefGoogle Scholar
  69. 67.
    J.B. Marion and F.C. Young, Nuclear Reaction Analysis, North-Holland Publishing Company, Amsterdam, 1968.Google Scholar
  70. 68.
    P.B. Price and J.R. Bird, Nuc. Inst. & Meth. 69, 277 (1969).ADSCrossRefGoogle Scholar
  71. 69.
    E.C. Lightowlers, J.C. North, A.S. Jordan, L. Derick and J.L. Merz, J. Appl. Phys. 44, 4758 (1973).ADSCrossRefGoogle Scholar
  72. 70.
    A. Turos, L. Wieluński, and A. Barcz, Nuc. Inst. & Meth. 111, 605 (1973).ADSCrossRefGoogle Scholar
  73. 71.
    P.P. Pronko and J.G. Pronko, Phys. Rev. B9, 2870 (1974).ADSGoogle Scholar
  74. 72.
    R.A. Langley, S.T. Picraux, and F.L. Vook, J. Nuc. Mat. 53, 257 (1974).ADSCrossRefGoogle Scholar
  75. 73.
    D.W. Palmer, Nuc. Inst. & Meth. 38, 187 (1965).ADSCrossRefGoogle Scholar
  76. 74.
    E. Möller, L. Nilsson, and N. Starfelt, Nuc. Inst. & Meth. 50, 270 (1967).ADSCrossRefGoogle Scholar
  77. 75.
    M. Peisach, Ref. 13, pg. 650.Google Scholar
  78. 76.
    J. Lorenzen, D. Brune, and S. Malmskog, J. Radioanal. Chem. l6, 483 (1973).CrossRefGoogle Scholar
  79. 77.
    K.L. Dunning, “Fortran Programs for (p, γ) Yield Calculations Based on Vavilov’s Theory of Energy Loss Distributions,” NRL Report 7230, Mar. 1971.Google Scholar
  80. 78.
    D.J. Neild, P.J. Wise, and D.G. Barnes, J. Phys. D: Appl. Phys. 5, 2292 (1972).ADSCrossRefGoogle Scholar
  81. 79.
    K.L. Dunning and H.L. Hughes, IEEE Trans. on Nuc. Sci. NS-19, 243 (1972).CrossRefGoogle Scholar
  82. 80.
    J.F. Chemin, J. Roturier, B. Saboya, and G.Y. Petit, Nuc. Inst. & Meth. 97, 211 (1971).ADSCrossRefGoogle Scholar
  83. 81.
    J.W. Butler, “Table of (p, γ) Resonances,” NRL Report 5282, Apr. 1959.Google Scholar
  84. 82.
    N. Bohr, Mat. Fys. Medd. Dan. Vid. Selsk 18, No. 8 (1948).Google Scholar
  85. 83.
    W.K. Chu and J.W. Mayer, “Energy Loss and Energy Straggling,” in Catania Working Data, to be published.Google Scholar
  86. 84.
    W.K. Chu and J.W. Mayer (unpublished)Google Scholar
  87. 85.
    C.C. Rousseau, W.K. Chu, and D. Powers, Phys. Rev. A4, 1066 (1970).ADSGoogle Scholar
  88. 86.
    M.K. Bernett, J.W. Butler, E.A. Wolicki, and W.A. Zisman, J. Appl. Phys. 42, 5826 (1971).ADSCrossRefGoogle Scholar
  89. 87.
    E. Möller and N. Starfelt, Nuc. Inst. & Meth. 50, 225 (1967).ADSCrossRefGoogle Scholar
  90. 88.
    B. Maurel, D. Dieumegard, and G. Amsel, J. Electrochem. Soc. 119 (1972).Google Scholar
  91. 89.
    J.W. Mandler, R.B. Moler, E. Raisen, and K.S. Rajan, Thin Solid Films 19, 165 (1973).ADSCrossRefGoogle Scholar
  92. 90.
    L. Porte, J.-P. Sandino, M. Talvat, J.P. Thomas, and J. Tousset, J. Radioanal. Chem. l6, 493 (1973).CrossRefGoogle Scholar
  93. 91.
    I. Golicheff and Ch. Engelmann, J. Radioanal. Chem. 16, 503 (1973).CrossRefGoogle Scholar
  94. 92.
    I. Golicheff, M. Loeuillet and Ch. Engelmann, J. Radioanal. Chem. 12, 233 (1972); see also Ref. 15, pg. 233.CrossRefGoogle Scholar
  95. 93.
    D.A. Leich and T.A. Tombrello, Nuc. Inst. & Meth. 108, 67 (1973).ADSCrossRefGoogle Scholar
  96. 94.
    J.L. Whitton, I.V. Mitchell and K.B. Winterbon, Can. J. Phys. 49, 1225 (1971).ADSCrossRefGoogle Scholar
  97. 95.
    J-M. Calvert, D.G. Lees, D.J. Derry, and D. Barnes, J. Radioanal. Chem. 12, 271 (1972); see also Ref. 15, pg. 271.CrossRefGoogle Scholar
  98. 96.
    R.O. Bondelid and C.A. Kennedy, Phys. Rev. 115, 1601 (1959).ADSCrossRefGoogle Scholar
  99. 97.
    D.V. Vavilov, Zh. Exper. Teor. Fiz. 32, 320 (1957), transi. JETP. 5, 749 (1957).Google Scholar
  100. 98.
    Studies in Penetration of Charged Particles in Matter, NAS-NRC publication 1133, 1964.Google Scholar
  101. 99.
    P.R. Malmberg, private communication.Google Scholar

Copyright information

© Plenum Press, New York 1975

Authors and Affiliations

  • Eligius A. Wolicki
    • 1
  1. 1.Radiation Technology DivisionNaval Research LaboratoryUSA

Personalised recommendations