Advertisement

The Central Nervous System

Its Uses and Limitations in Assessing Phylogenetic Relationships
  • C. B. G. Campbell

Abstract

The central nervous system has played a significant role in the definition and characterization of the order Primates. In order to discuss the uses and limitations inherent in using the nervous system for assessing phylogenetic relationships, it will be necessary to briefly review some aspects of the anatomy of the nervous system and the technical methods formerly and presently available for studying it. Our understanding of this organ system is markedly limited by the methods used for its study.

Keywords

Corticospinal Tract Lateral Geniculate Nucleus Tree Shrew Order Primate Nurse Shark 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ariëns Kappers, C. U., G. C. Huber, and E. C. Crosby. 1936. The Comparative Anatomy of the Nervous System of Vertebrates, Including Man. MacMillan, New York.Google Scholar
  2. Bergquist, H. 1932. Morphologie des Zwischenhirns bei niederen Wirbeltieren. Acta Zool. 13:57–304.CrossRefGoogle Scholar
  3. Bock, W. J. 1969. Discussion: The concept of homology. In. M. Petras and C. R. Noback, eds., Comparative and Evolutionary Aspects of the Vertebrate Central Nervous System. Ann. N.Y. Acad. Sci. 167:71–73.Google Scholar
  4. Buxton, D. F., and D. C. Goodman. 1967. Motor function and the corticospinal tracts in the dog and raccoon. J. Comp. Neurol. 129:341–360.PubMedCrossRefGoogle Scholar
  5. Campbell, C. B. G. 1966a. Taxonomic status of tree shrews. Science153:436.PubMedCrossRefGoogle Scholar
  6. Campbell, C. B. G. 1966b. The relationships of the tree shrews: The evidence of the nervous system. Evolution20:276–281.CrossRefGoogle Scholar
  7. Campbell, C. B. G. 1969. The visual system of insectivores and primates. Ann. N.Y. Acad. Sci. 167:388–403.CrossRefGoogle Scholar
  8. Campbell, C. B. G. 1972. Evolutionary patterns in mammalian diencephalic visual nuclei and their fiber connections. Brain Behav. Evol. 6:218–236.PubMedCrossRefGoogle Scholar
  9. Campbell, C. B. G. 1974. On the phyletic relationships of the tree shrews. Mammal Rev. 4(4): 125–143.CrossRefGoogle Scholar
  10. Campbell, C. B. G.1975 (in press). What animals should we compare? In B. Masterton et al., eds., Evolution, Brain, and Behavior: Persistent Problems. Erlbaum and Associates, Hillsdale, N.J.Google Scholar
  11. Campbell, C. B. G., and W. R. Hayhow. 1972. Primary optic pathways in the duckbill platypus, Ornithorhynchus anatinus: An experimental degeneration study. J. Comp. Neurol. 145:195–208.PubMedCrossRefGoogle Scholar
  12. Campbell, C. B. G., and W. Hodos. 1970. The concept of homology and the evolution of the nervous system. Brain Behav. Evol. 3:353–367.PubMedCrossRefGoogle Scholar
  13. Campbell, C. B. G., J. A. Jane, and D. Yashon. 1967. The retinal projections of the tree shrew and hedgehog. Brain Res. 5:406–418.PubMedCrossRefGoogle Scholar
  14. Campbell, C. B. G., D. Yashon, and J. A. Jane. 1966. The origin, course and termination of corticospinal fibers in the slow loris, Nycticebus coucang (Boddaert). J. Comp. Neurol. 127:101–112.PubMedCrossRefGoogle Scholar
  15. Campos-Ortega, J. A., and Glees, P. 1967. The subcortical distribution of optic fibers in Saimiri sciureus (Squirrel Monkey). J. Comp. Neurol. 131:131–142.PubMedCrossRefGoogle Scholar
  16. Chambers, W. W., and C. N. Liu. 1957. Corticospinal tract of the cat. An attempt to correlate the pattern of degeneration with deficits in reflex activity following neocortical lesions. J. Comp. Neurol. 108:23–55.PubMedCrossRefGoogle Scholar
  17. Clark, W. E. Le Gros. 1930. The thalamus of Tarsius. J. Anat. 64:371–414.Google Scholar
  18. Clark, W. E. Le Gros. 1971. The Antecedents of Man, 3rd ed. Quadrangle, Chicago.Google Scholar
  19. Cowan, W. M., D. I. Gottlieb, A. E. Hendrickson, J. L. Price, and T. A. Woolsey. 1972. The autoradiographic demonstration of axonal connections in the central nervous system. Brain Res. 37:21–51.PubMedCrossRefGoogle Scholar
  20. Crowle, P. K. 1974. Experimental Investigation of Retinofugal Connections to the Diencephalon and Midbrain of Chiroptera. Thesis, Indiana University.Google Scholar
  21. Ebbesson, S. O. E. 1967. Ascending axon degeneration following hemisection of the spinal cord in the Tegu lizard (Tupinambis nigropunctatus). Brain Res. 5:178–206.PubMedCrossRefGoogle Scholar
  22. Ebbesson, S. O. E., 1972. New insights into the organization of the shark brain. Proc. Elasmobranch Biol. Symp. 1971. Comp. Biochem. Physiol. 42:121–129.CrossRefGoogle Scholar
  23. Ebbesson, S. O. E., and L. Heimer. 1970. Projections of the olfactory tract fibers in the nurse shark (Gingylymostoma cirratum). Brain Res. 17:47–55.PubMedCrossRefGoogle Scholar
  24. Ebbesson, S. O. E., and D. M. Schroeder. 1971. Connections of the nurse shark’s telencephalon. Science173:254–256.PubMedCrossRefGoogle Scholar
  25. Ebbesson, S. O. E., J. A. Jane, and D. M. Schroeder. 1972. A general overview of major interspecific variations in thalamic organization. Brain Behav. Evol. 6:92–130.PubMedCrossRefGoogle Scholar
  26. Elliot Smith, G. 1924. Essays on the Evolution of Man. Oxford University Press, London.Google Scholar
  27. Fink, R. P., and L. Heimer. 1967. Two methods for selective silver impregnation of degenerating axons and their synaptic endings in the central nervous system. Brain Res. 4:369–374.PubMedCrossRefGoogle Scholar
  28. Fuse, G. 1926. Vergleichend-anatomische Beiträge zur Kenntnis über die sog. obere, zweite oder proximale Pyramidenkreuzung bei Edentaten, sowie bei einigen fliegenden Saügern. Arb. Anat. Inst. Sendai12:47–92.Google Scholar
  29. Ghiselin, M. T. 1966a. An application of the theory of definitions to systematic principles. Syst. Zool. 15:127–130.CrossRefGoogle Scholar
  30. Ghiselin, M. T.1966b. On psychologism in the logic of taxonomic controversies. Syst. Zool. 15:207–215.CrossRefGoogle Scholar
  31. Giolli, R. A., and J. Tigges. 1970. The primary optic pathways and nuclei in primates, pp. 29–54. In C. R. Noback and W. Montagna, eds., Advances in Primatology, Vol. 1. Appleton-Century-Crofts, New York.Google Scholar
  32. Goldby, F. 1939. An experimental investigation of the motor cortex and pyramidal tract of Echidna aculeata. J. Anat. 73:509–524.Google Scholar
  33. Guillery, R. W. 1970. The laminar distribution of retinal fibers in the dorsal lateral geniculate nucleus of the cat. A new interpretation. J. Comp. Neurol. 138:339–368.CrossRefGoogle Scholar
  34. Hall, W. C., and F. F. Ebner. 1970a. Parallels in the visual afferent projections of the thalamus in the hedgehog (Paraechinus hypomelas) and the turtle (Pseudemys scripta). Brain Behav. Evol. 3:135–154.PubMedCrossRefGoogle Scholar
  35. Hall, W. C., and F. F. Ebner, 1970b. Thalamotelencephalic projections in the turtle. (Pseudemys scripta) J. Comp. Neurol. 140:101–122.PubMedCrossRefGoogle Scholar
  36. Hassler, R. 1966. Comparative anatomy of the central visual systems in day- and night-active primates, pp. 419–434. In R. Hassler and H. Stephan, eds., Evolution of the Forebrain. Georg Thieme Verlag, Stuttgart.Google Scholar
  37. Hayhow, W. R. 1967. The lateral geniculate nucleus of the marsupial phalanger, Trichosurus vulpecula. An experimental study in relation to the intranuclear optic nerve projection fields. J. Comp. Neurol. 131:571–604.PubMedCrossRefGoogle Scholar
  38. Herrick, C.J. 1933. The amphibian forebrain. VI. Necturus. J. Comp. Neurol. 58:1–288.CrossRefGoogle Scholar
  39. Hines, M. 1929. The brain of Ornithorhynchus anatinus. Philos. Trans. Roy. Soc. London, Ser. B217:155–287.CrossRefGoogle Scholar
  40. Hodos, W., and C. B. G. Campbell. 1969. Scala Naturae: Why there is no theory in comparative psychology. Psychol. Rev. 76:337–350.CrossRefGoogle Scholar
  41. Jane, J. A., C. B. G. Campbell, and D. Yashon. 1969. The origin of the corticospinal tract of the tree shrew (Tupaia glis) with observations on its brain stem and spinal terminations. Brain Behav. Evol. 2:160–182.CrossRefGoogle Scholar
  42. Johnson, J. I., and M. P. Marsh. 1969. Laminated lateral geniculate in the nocturnal marsupial Petaurus hreviceps (sugar glider). Brain Res. 15:250–254.PubMedCrossRefGoogle Scholar
  43. Jones, Ruth McClung. 1950. McClung’s Handbook of Microscopical Technique. Hoeber, New York.Google Scholar
  44. Källen, B. 1951. Embryological studies on the nuclei and their homologization in the vertebrate forebrain. K. Fisiogr. Saellsk. Lund Handl. N.F. 62:34.Google Scholar
  45. Karten, H. J. 1967. The organization of the ascending auditory pathway in the pigeon (Columba livia). I. Diencephalic projections of the inferior colliculus (nucleus mesencephali lateralis, pars dorsalis). Brain Res. 6:409–427.PubMedCrossRefGoogle Scholar
  46. Karten, H.J. 1968. The ascending auditory pathway in the pigeon (Columba livia). II. Telencephalic projections of the nucleus ovoidalis thalami. Brain Res. 11:134–153.PubMedCrossRefGoogle Scholar
  47. Karten, H. J. 1971. Efferent projections of the wulst of the owl. Anat. Rec. 169:353 (abstract).Google Scholar
  48. Karten, H. J., and J. Dubbeldam. 1973. The organization and projections of the paleostriatal complex in the pigeon (Columba livia.). J. Comp. Neurol. 148:61–90.PubMedCrossRefGoogle Scholar
  49. Karten, H. J., and W. Hodos. 1970. Telencephalic projections of the nucleus rotundus in the pigeon (Columba livia). J. Comp. Neurol. 140:35–51.PubMedCrossRefGoogle Scholar
  50. Karten, H. J., and A. M. Revsin. 1966. The afferent connections of the nucleus rotundus in the pigeon. Brain Res. 2:368–377.PubMedCrossRefGoogle Scholar
  51. Karten, H. J., W. Hodos, W.J. H. Nauta, and A. M. Revsin. 1973. Neural connections of the visual “Wulst” of the avian telencephalon. Experimental studies in the pigeon (Columba livia) and owl (Speotytocunicularia). J. Comp Neurol. 150:253–278.PubMedCrossRefGoogle Scholar
  52. Kuhlenbeck, H. 1929. Uber die Grundbestandteile des Zwischenhirnbauplans der Anamnier. Morphol.J. 63:50–95.Google Scholar
  53. Kuypers, H. G.J. M. 1958. Pericentral cortical projections to motor and sensory nuclei. Science128:662–663.PubMedCrossRefGoogle Scholar
  54. Kuypers, H. G.J. M. 1960a. Central cortical projections to motor and somatosensory cell groups. Brain83:161–184.PubMedCrossRefGoogle Scholar
  55. Kuypers, H. G. J. M. 1960b. Central cortical projections to motor somatsosensory and reticular cell groups, pp. 138–143. In D. B. Tower and J. P. Schadé, eds., Structure and Functions of the Cerebral Cortex. Elsevier, Amsterdam.Google Scholar
  56. Kuypers, H. G. J. M. 1964. The descending pathways to the spinal cord, their anatomy and function, pp. 178–202. In J. C. Eccles and J. P. Schadé, eds., Progress in Brain Research, Vol. 2. Elsevier, Amsterdam.Google Scholar
  57. Lankester, E. R. 1870. On the use of the term homology in modern zoology, and the distinction between homogenetic and homoplastic agreements. Ann. Mag. Nat. Hist. 6:34–43.CrossRefGoogle Scholar
  58. Marchi, V., and Algeri, G. 1897. Riv. Sper. Freniatr. Med. Leg. 12:3.Google Scholar
  59. Nauta, W. J. H., and P. A. Gygax. 1954. Silver impregnation of degenerating axons in the central nervous system: A modified technique. Stain Technol. 29:91–93.PubMedGoogle Scholar
  60. Nauta, W. J. H., and L. F. Ryan. 1952. Selective silver impregnation of degenerating axons in the central nervous system. Stain Technol. 27:175–179.PubMedGoogle Scholar
  61. Nieuwenhuys, R., and T. S. Bodenheimer. 1966. The diencephalon of the primitive bony fish Polypterus in the light of the problem of homology. J. Morphol. 188:415–450.CrossRefGoogle Scholar
  62. Noback, C. R., and J. E. Shriver. 1966. Phylogenetic and ontogenetic aspects of the lemniscal systems and the pyramidal system, pp. 316–325. In R. Hassler and H. Stephan, eds., Evolution of the Forebrain. Georg Thieme Verlag, Stuttgart.Google Scholar
  63. Petras, J. M., and R. A. W. Lehman. 1966. Corticospinal fibers in the raccoon. Brain Res. 3:195–197.PubMedCrossRefGoogle Scholar
  64. Rioch, D. McK. 1929. Studies on the diencephalon of Carnivora. I. The nuclear configuration of the thalamus, epithalamus, and hypothalamus of the dog and cat. J. Comp. Neurol. 41:1–120.CrossRefGoogle Scholar
  65. Simpson, G. G. 1961. Principles of Animal Taxonomy. Columbia, New York.Google Scholar
  66. Spatz, W. B., and J. Tigges. 1972. Species difference between Old World and New World monkeys in the organization of the striate-prestriate association. Brain Res. 43:591–594.PubMedCrossRefGoogle Scholar
  67. Strominger, N. L. 1969. A comparison of the pyramidal tracts in two species of edentate. Brain Res. 15:259–262.PubMedCrossRefGoogle Scholar
  68. Tigges, J., and M. Tigges. 1969. The accessory optic system and other optic fibers of the squirrel monkey. Folia Primat. 10:245–262.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1975

Authors and Affiliations

  • C. B. G. Campbell
    • 1
  1. 1.Departments of Anatomy and Radiological Sciences, California College of MedicineUniversity of California, IrvineIrvineUSA

Personalised recommendations