Protein Sequence and Immunological Specificity

Their Role in Phylogenetic Studies of Primates
  • Morris Goodman


“In regard to classification and all the endless disputes about the ‘Natural System’, which no two authors define in the same way, I believe it ought, in accordance to my heterodox notions, to be simply genealogical. But as we have no written pedegrees you will, perhaps, say this will not help much; but I think it ultimately will, whenever heterodoxy becomes orthodox, for it will clear away an immense amount of rubbish about the value of characters, and will make the difference between analogy and homology clear. The time will come, I believe, though I shall not live to see it, when we shall have very fairly true genealogical trees of each great kingdom of Nature.” [Charles Darwin, letter* to Thomas H. Huxley.]


Maximum Parsimony World Monkey Spider Monkey Capuchin Monkey Tree Shrew 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Arnhein, N., E. M. Prager, and A. C. Wilson. 1969. Immunological prediction of sequence differences among proteins. J. Biol Chem. 244:2085–2094.Google Scholar
  2. Baba, M. L., M. Goodman, H. Dene, and G. W. Moore. 1975. Origins of the Ceboidea viewed from an immunological perspective. J. Hum. Evol. 4: 89–102.CrossRefGoogle Scholar
  3. Barnicot, N. A., and D. Hewett-Emmett. 1974. Electrophoretic studies on prosimian blood proteins, pp. 891–902. In R. D. Martin, G. A. Doyle, and A. C. Walker, eds., Prosimian Biology. Duckworth, London.Google Scholar
  4. Boyer, S. H., A. N. Noyes, G. F. Timmons, and R. A. Young. 1972. Primate hemoglobins: polymorphisms and evolutionary patterns. J. Hum. Evol. 1:515–543.CrossRefGoogle Scholar
  5. Boyer, S. H., A. N. Noyes, M. L. Boyer, and K. Man. 1973. Hemoglobin 3α-chains in apes. J. Biol. Chem. 248:992–1003.PubMedGoogle Scholar
  6. Buettner-Janusch, J., V. Buettner-Janusch, and G. A. Mason. 1969. Amino acid compositions and aminoterminal end groups of alpha and beta chains from polymorphic hemoglobins of Pongo pygmaeus. Arch. Biochem. Biophys. 133:164–170.CrossRefGoogle Scholar
  7. Butler, P. M. 1956. The skull of Ictops and the classification of the Insectivora. Proc. Zool. Soc. London126:453–481.CrossRefGoogle Scholar
  8. Cavalli-Sforza, L. L., and A. W. F. Edwards. 1967. Phylogenetic analysis: models and estimation procedures. Evolution21:550–570.CrossRefGoogle Scholar
  9. Cronin, J. E., V. M. Sarich, and Y. Rumpler. 1974. Albumin and transferrin evolution among the Lemuriformes. Am. J. Phys. Anthropol. 41:473–474.Google Scholar
  10. Darga, L. L., M. Goodman, and M. L. Weiss. 1973. Molecular evidence on the cladistic relationships of the Hylobatidae, pp. 149–162. In D. M. Rumbaugh, ed., Gibbon and Siamang, Vol. 2. S. Karger, Basel.Google Scholar
  11. Darwin, C. 1859. The origin of species by means of natural selection, or the preservation of favoured races in the struggle for life. Doubleday, Garden City. 517 pp. Reprinted ed.Google Scholar
  12. Darwin, F. 1903. More letters of Charles Darwin: a record of his work in a series of hitherto unpublished letters, Vol. 1. Appleton, New York. 494 pp.CrossRefGoogle Scholar
  13. Dayhoff, M. O. 1972. Atlas of Protein Sequence and Structure, Vol. 5. National Biomedical Research Foundation, Silver Spring. 542 pp.Google Scholar
  14. Dayhoff, M. O. 1973. Atlas of Protein Sequence and Structure, Vol. 5. Supplement 1. National Biomedical Reserach Foundation, Silver Spring. 114 pp.Google Scholar
  15. De Jong, W. W. W. 1971. Chimpanzee foetal haemoglobin: structure and heterogeneity of the γ-chain. Biochim. Biophys. Acta251:217–226.PubMedGoogle Scholar
  16. Dene, H., M. Goodman, W. Prychodko, and G. W. Moore. 1975 (in press). Immunodiffusion systematics of the Primates. III. The Strepsirhini. Folia Primatol. Google Scholar
  17. Dumur, V., M. Dautrevaux, and K. Han. 1972. The partial amino acid sequence of dog myoglobin. FEBS Lett. 26:241–244.PubMedCrossRefGoogle Scholar
  18. Edwards, A. W. F., and L. L. Cavalli-Sforza. 1963. The reconstruction of evolution. Ann. Human Genet. 27:104.Google Scholar
  19. Estabrook, G. F. 1968. A general solution in partial orders for the Camin-Sokal model in phylogeny. J. Theor. Biol. 21:421–438.PubMedCrossRefGoogle Scholar
  20. Farris, J. S. 1970. Methods for computing Wagner trees. Syst. Zool. 19:83–92.CrossRefGoogle Scholar
  21. Fiedler, W. 1956. Ubersicht über das System der Primaten, pp. 1–226. In H. Hofer, A. H. Schultz, and D. Stark, eds., Primatologia, Vol. 1. S. Karger, Basel.Google Scholar
  22. Fitch, W. M. 1970. Distinguishing homologous and analogous proteins. Syst. Zool. 19:99–113.PubMedCrossRefGoogle Scholar
  23. Fitch, W. M. 1971. Toward defining the course of evolution: minimum change for a specific tree topology. Syst. Zool. 20:406–416.CrossRefGoogle Scholar
  24. Floch, R., M. Dautrevaux, and K. K. Han. 1973. Sequence partielle des acides amines de la myoglobine de porc. Biochimie55:95–98.CrossRefGoogle Scholar
  25. Ghiselin, M. T., and L. Jaffe. 1973. Phylogenetic classification in Darwin’s monograph on the sub-class Cirripedia. Syst. Zool. 22:132–140.CrossRefGoogle Scholar
  26. Goodman, M. 1961. The role of immunochemical differences in the phyletic development of human behavior. Hum. Biol. 33:131–162.PubMedGoogle Scholar
  27. Goodman, M. 1963a. Serological analysis of the systematics of recent hominoids. Hum. Biol. 35:377–436.PubMedGoogle Scholar
  28. Goodman, M. 1963b. Man’s place in the phylogeny of the primates as reflected in serum proteins, pp. 204–234. In S. L. Washburn, ed., Classification and Human Evolution. Aldine, Chicago.Google Scholar
  29. Goodman, M. 1965. The specificity of proteins and the process of primate evolution, pp. 70–86. In H. Peters, ed., Protides of the Biological Fluids—1964. Elsevier, Amsterdam.Google Scholar
  30. Goodman, M. 1967. Deciphering primate phylogeny from macromolecular specificities. Am. J. Phys. Anthropol. 26:255–275.CrossRefGoogle Scholar
  31. Goodman, M. 1973. The chronicle of primate phylogeny contained in proteins. Symp. Zool. Soc. London33:339–375.Google Scholar
  32. Goodman, M., and G. W. Moore. 1971. Immunodiffusion systematics of the primates. I. The Catarrhini. Syst. Zool. 20:19–62.CrossRefGoogle Scholar
  33. Goodman, M., J. Barnabas, G. Matsuda, and G. W. Moore. 1971. Molecular evolution in the descent of man. Nature233:604–613.PubMedCrossRefGoogle Scholar
  34. Goodman, M., J. Barnabas, and G. W. Moore. 1972. Man, the conservative and revolutionary mammal: Molecular findings on this paradox. J. Hum. Evol. 1:663–686.CrossRefGoogle Scholar
  35. Goodman, M. W. Farris, Jr., G. W. Moore, W. Prychodko, E. Poulik, and M. W. Sorenson. 1974a. Immunodiffusion systematics of the primates. II. Findings on Tarsius, Lorisidae and Tupaiidae, pp. 881–890. In R. D. Martin, G. A. Doyle, and A. C. Walker, eds., Duckworth, London.Google Scholar
  36. Goodman, M., G. W. Moore, J. Barnabas, and G. Matsuda. 1974b. The phylogeny of human globin genes investigated by the maximum method. J. Mol. Evol. 3: 1–48.Google Scholar
  37. Gregory, W. K. 1910. The orders of mammals. Bull. Am. Mus. Nat. Hist. 27:1–524.Google Scholar
  38. Hartigan, J. A. 1973. Minimum mutation fits to a given tree. Biometrics29:53–65.CrossRefGoogle Scholar
  39. Hennig, W. 1965. Phylogenetic systematics. Ann. Rev. Entomol. 10:97–116.CrossRefGoogle Scholar
  40. Hennig, W. 1966. Phylogenetic Systematics. University of Illinois Press, Urbana. 263 pp.Google Scholar
  41. Hill, W. C. O., 1953. Primates, Vol. I. Strepsirhini. Edinburgh Univ. Press, Edinburgh.Google Scholar
  42. Hill, R. L. 1968. Unpublished results, pp. 1–174. In H. A. Sober, ed., Handbook of Biochemistry. Chemical Rubber Co., Chicago.Google Scholar
  43. Holmquist, R., L. R. Cantor, and T. H. Jukes. 1972. Improved procedures for comparing homologous sequences in molecules of proteins and nucleic acids. J. Mol. Biol. 64:145–161.PubMedCrossRefGoogle Scholar
  44. Hoyer, B. H., and R. B. Roberts. 1967. Studies of nucleic acid interactions using DNA-agar, pp. 425–479. In H. Taylor, ed., Molecular Genetics Part II. Academic Press, New York.Google Scholar
  45. Hoyer, B. H., B. J. McCarthy, and E. T. Bolton. 1964. A molecular approach in the systematics of higher organisms. Science144:959–967.CrossRefGoogle Scholar
  46. Hoyer, B. H., E. T. Bolton, B.J. McCarthy, and R. B. Roberts. 1965. The evolution of polynucleotides, pp. 581–590. In V. Bryson and H. J. Vogel, eds., Evolving Genes and Proteins. Academic Press, New York.Google Scholar
  47. Hoyer, B. H., N. W. van de Velde, M. Goodman, and R. B. Roberts. 1972. Examination of hominid evolution by DNA sequence homology. J. Hum. Evol. 1:645–649.CrossRefGoogle Scholar
  48. Jukes, T. H., and R. Holmquist. 1972. Estimation of evolutionary changes in certain homologous polypeptide chains. J. Mol. Biol. 64:163–179.PubMedCrossRefGoogle Scholar
  49. Kohne, D. E., J. A. Chiscon, and B. H. Hoyer. 1972. Evolution of primate DNA sequences. J. Hum. Evol. 1:627–644.CrossRefGoogle Scholar
  50. Lasker, G. W. 1973. Physical Anthropology. Holt, Rein hart, and Winston, New York. 424 pp.Google Scholar
  51. Martin, M. A., and B. H. Hoyer. 1967. Adenine plus thymine and guanine plus cytosine enriched fractions of animal DNA as indicators of polynucleotide homologies. J. Mol. Biol. 27:113–129.PubMedCrossRefGoogle Scholar
  52. Matsuda, G., T. Maita, K. Mizuno, and H. Ota. 1973a. Amino acid sequence of a β-chain of AII component of adult chicken haemoglobin. Nature244:244.Google Scholar
  53. Matsuda, G., T. Maita, B. Watanabe, A. Araya, K. Morokuma, M. Goodman, and W. Prychodko. 1973b. The amino acid sequences of the α and β polypeptide chains of adult hemoglobin of the savannah monkey (Cercopithecus aethiops). Hoppe-Seyler’s Z. Physiol. Chem. 354:1153–1155.Google Scholar
  54. Matsuda, G., T. Maita, B. Watanabe, A. Araya, K. Morokuma, Y. Ota, M. Goodman, J. Barnabas, and W. Prychodko. 1973c. The amino acid sequences of the α and β polypeptide chains of adult hemoglobin of the capuchin monkey (Cebus apella). Hoppe-Seyler’s Z. Physiol. Chem. 354:1513–1516.PubMedGoogle Scholar
  55. Matsuda, G., T. Maita, Y. Suzuyama, M. Setoguchi, Y. Ota, A. Araya, M. Goodman, J. Barnabas, and W. Prychodko. 1973d. Studies of the primary structures of α and β polypeptide chains of adult hemoglobin of the spider monkey (Ateles geoffroyi). Hoppe-Seyler’s Z. Physiol. Chem. 354:1517–1520.PubMedGoogle Scholar
  56. Matsuda, G., T. Maita, H. Ota, A. Araya, Y. Nakashima, V. Ismi, and M. Nakashima. 1973e. The primary structures of α and β chains of adult hemoglobin of the Japanese monkey (Macaca fuscata fuscata). Int.f. Pept. Protein Res. 5:405–418.CrossRefGoogle Scholar
  57. Matsuda, G., T. Maita, B. Watanabe, H. Ota, A. Araya, M. Goodman, and W. Prychodko. 1973f. The primary structures of the α and β polypeptide chains of adult hemoglobin of the slow loris (Nycticebus coucang). Int. J. Pept. Protein Res. 5:419–421.PubMedCrossRefGoogle Scholar
  58. Matsuda, G., T. Maita, Y. Nakashima, J. Barnabas, P. K. Ranjekar, and N. S. Gandhi. 1973g. The primary structures of the α and β polypeptide chains of adult hemoglobin of the human langur (Presbytis entellus). Int. J. Pept. Protein Res. 5:423–425.PubMedCrossRefGoogle Scholar
  59. Moore, G. W. 1971. A Mathematical Model for the Construction of Cladograms. Ph.D. Thesis. North Carolina State University, Raleigh. 262 pp.Google Scholar
  60. Moore, G. W., and M. Goodman. 1968. A set theoretical approach to immunotaxonomy: analysis of species comparisons in modified Ouchterlony plates. Bull. Math. Biophys. 30:279–289.PubMedCrossRefGoogle Scholar
  61. Moore, G. W., M. Goodman, and J. Barnabas. 1973a. An iterative approach from the standpoint of the additive hypothesis to the dendrogram problem posed by molecular data sets. J. Theor. Biol. 38:423–457.PubMedCrossRefGoogle Scholar
  62. Moore, G. W., J. Barnabas, and M. Goodman. 1973b. A method for constructing maximum parsimony ancestral amino acid sequences on a given network. J. Theor. Biol. 38:459–485.PubMedCrossRefGoogle Scholar
  63. Nuttall, G. H. F. 1904. Blood Immunity and Blood Relationship. Cambridge University Press, Cambridge. 444 pp.Google Scholar
  64. Patterson, B. 1965. The fossil elephant shrews (family Macroscelididae). Bull. Mus. Comp. Zool., Harvard Univ. 133(6): 295–335.Google Scholar
  65. Prager, E. M., and A. C. Wilson. 1971a. The dependence of immunological cross-reactivity upon sequence resemblance among lysozymes. I. Micro-complement fixation studies. J. Biol. Chem. 246:5978–5989.PubMedGoogle Scholar
  66. Prager, E. M., and A. C. Wilson. 1971b. The dependence of immunological cross-reactivity upon sequence resemblance among lysozymes. II. Comparison of precipitin and micro-complement fixation studies. J. Biol. Chem. 246:7010–7017.PubMedGoogle Scholar
  67. Romero-Herrera, A. E., and H. Lehmann. 1972. The myoglobin of primates. III. Cercopithecidae (old world monkeys): Papio anubis (olive baboon) and Macaca fascicular is (= irus, crab eating monkey). Biochim. Biophys. Acta278:465–481.Google Scholar
  68. Romero-Herrera, A. E., and H. Lehmann. 1973a. The myoglobin of primates. IV. New world monkeys: Cebidae: (1) Saimiri scuireus (squirrel monkey); (2) Lagothrix lagothricha (Humboldt’s woolly monkey); Callitrichidae: Callithrix jacchus (common marmoset). Biochim. Biophys. Acta317:65–84.Google Scholar
  69. Romero-Herrera, A. E., and H. Lehmann. 1973b. The myoglobin of primates. V. Prisomians: Galago crassicaudatus (thick-tailed galago) and Lepilemur mustelinus (sportive lemur). Biochim. Biophys. Acta322:10–22.PubMedGoogle Scholar
  70. Romero-Herrera, A. E., and Lehmann, H. 1974. The myoglobin of primates. VI. Tupaiaglis belangen (common tree shrews). Biochim. Biophys. Acta359:236–241.PubMedGoogle Scholar
  71. Romero-Herrera, A. E., and H. Lehmann. 1975. The myoglobin of primates. VII. Perodicticus potto edwarsi (potto). Biochim. Biophys. Acta393:205–214.PubMedGoogle Scholar
  72. Sarich, V. M. 1970. Primate systematics with special reference to Old World monkeys—A protein perspective, pp. 175–226. In J. R. Napier and P. H. Napier, eds., Old World Monkeys, Evolution, Systematics, and Behavior. Academic Press, New York.Google Scholar
  73. Sarich, V. M., and J. E. Cronin. 1974. Primate evolution at higher taxon levels: A molecular view. Paper presented at the 43rd Annual Meeting of the American Association of Physical Anthropologists, Amherst, Massachusetts.Google Scholar
  74. Sarich, V. M., and A. C. Wilson. 1967. Immunological time scale for hominoid evolution. Science158:1200–1203.PubMedCrossRefGoogle Scholar
  75. Simpson, G. G. 1945. The principles of classification and a classification of mammals. Bull. Am. Mus. Nat. Hist. 85:1–350.Google Scholar
  76. Sokal, R. R., and C. D. Michener. 1958. A statistical method for evaluating systematic relationships. Kans. Univ. Sci. Bull. 38:1409–1438.Google Scholar
  77. Tashian, R. E., R.J. Tanis, R. E. Ferrell, S. K. Stroup, and M. Goodman. 1972. Differential rates of evolution in carbonic anhydrase isozymes of catarrhine primates. J. Hum. Evol. 1:545–552.CrossRefGoogle Scholar
  78. Tashian, R. E., M. Goodman, R. J. Tanis, R. E. Ferrell, and W. R. A. Osborne. 1975, pp. 207–223. Evolution of the carbonic anhydrase isozymes. In C. L. Markert, ed., Isozymes IVGenetics and Evolution. Academic Press, New York.Google Scholar
  79. Tetaert, D., K. K. Han, M. T. Plaucot, M. Dautrevaux, S. Ducastaing, L. Hombrados, and E. Neuzil. 1974. The primary sequence of badger myoglobin. Biochim. Biophys. Acta351:317–324.PubMedGoogle Scholar
  80. Vigna, R. A., L.J. Gurd, and F. R. N. Gurd. 1974. California sea lion myoglobin: complete covalent structure of the polypeptide chain. J. Biol. Chem. 249:4144–4148.PubMedGoogle Scholar
  81. Whittaker, R. G., W. O. Fisher, and E. O. P. Thompson. 1972. Studies on monotreme proteins. I. Amino acid sequence of the β-chain of haemoglobin from the echidna, Tachyglossus aculeatus aculeatus. Aust. J. Biol. Sci. 25:989–1004.Google Scholar
  82. Whittaker R. G., W. O. Fisher, and E. O. P. Thompson. 1973. Studies on monotreme proteins. II. Amino acid sequence of the α-chain of haemoglobin from the echidna, Tachyglossus aculeatus aculeatus. Aust. J. Biol. Sci. 26:877–888.Google Scholar
  83. Wilson, A. C., and V. M. Sarich. 1969. A molecular time scale for human evolution. Proc. Natl. Acad. Sci. Wash. 63:1088–1093.CrossRefGoogle Scholar
  84. Wooding, G. L., and R. F. Doolittle. 1972. Primate fibrinopeptides: evolutionary significance. J. Hum. Evol. 1:553–563.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1975

Authors and Affiliations

  • Morris Goodman
    • 1
  1. 1.Department of Anatomy, School of MedicineWayne State UniversityDetroitUSA

Personalised recommendations