Advertisement

Recent Developments in Lasers

  • Winston E. Kock
Part of the Optical Physics and Engineering book series (OPEG)

Abstract

Since the early work of Maiman, a long list of new types of lasers has appeared. Here we will review those developments which have had particular impact upon the engineering applications possibilities of lasers and holography. Because we shall be discussing how “powerful” some of the recent lasers are, we first recall (1) the various units of power, energy, and dimension (in space and time), and (2) the ranges of frequency and wavelength usually associated with the ultraviolet, visible and infrared regions of the spectrum.

Keywords

Yttrium Aluminum Garnet Laser Amplifier Bell Telephone Laboratory Lawrence Livermore Laboratory Solid Laser 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P. P. Sorokin and M. J. Stevenson, Stimulated infra-red emission of trivalent uranium, Phys. Rev. Lett. 5, 557–559 (1960).CrossRefGoogle Scholar
  2. 2.
    E. Snitzer, Optical maser action of Nd3+ in a barium crown glass, Phys. Rev. Lett. 7, 444–446 (1961).CrossRefGoogle Scholar
  3. 3.
    L. R. Solon, Lasers and fusion, Ind. Res. 13 (11), 31–34 (1971).Google Scholar
  4. 4.
    CGE gives details of experiment that produced fusion neutrons, Laser Focus 5, Dec. 14 (1969).Google Scholar
  5. 5.
    Hundred-joule lasers are producing high-temperature plasmas, Phys. Today 22 (11), 55 (1969).Google Scholar
  6. 6.
    Lasersphere3, June/July, 9–10 (1973).Google Scholar
  7. 7.
    Optical Spectra6, Sept., 21–22 (1972).Google Scholar
  8. 8.
    Optical Spectra5, Apr., 17–18 (1971).Google Scholar
  9. 9.
    M. Eleccion, The family of lasers: A Survey, IEEE Spectrum 9, Mar., 26–40 (1972).CrossRefGoogle Scholar
  10. 10.
    C. K. N. Patel, Selective excitation through vibrational energy transfer and optical maser action in N2-CO2, Phys. Rev. Lett. 13, 617–619 (1964).CrossRefGoogle Scholar
  11. 11.
    Int. Sci. Tech.Jan., 61 (1967).Google Scholar
  12. 12.
    D. A. Leonard, Appl. Phys. Lett. 7, 4 (1965).CrossRefGoogle Scholar
  13. 13.
    A. E. Hill, Appl. Phys. Lett. 12, 324 (1968).CrossRefGoogle Scholar
  14. 14.
    Microwaves10, Mar., 38 (1971).Google Scholar
  15. 15.
    Ind. Res. 15 (6), 23 (1973).Google Scholar
  16. 16.
    A. J. Demaria, Review of C.W. high-power CO2 lasers, Proc. IEEE 61 (6), 731–748 (1973).CrossRefGoogle Scholar
  17. 17.
    W. H. Christiansen and A. Hertzberg, Gas dynamic lasers and photon machines, Proc. IEEE 61 (8), 1060–1072, (1973).CrossRefGoogle Scholar
  18. 18.
    S. Yatsiv, Pulsed CO2 gas dynamic laser, Appl. Phys. Lett. 19, 65–68 (1971).CrossRefGoogle Scholar
  19. 19.
    Microwaves10, Mar., 16 (1971).Google Scholar
  20. 20.
    Microwaves10, Mar., 18 (1971).Google Scholar
  21. 21.
    Laser Focus9, Sept., 24 (1973).Google Scholar
  22. 22.
    Phys. Today25 (4), 19–20 (1972).Google Scholar
  23. 23.
    Ind. Res.14 (5), 48 (1972).Google Scholar
  24. 24.
    K. G. Hernquist, Noblest of the metal-vapor lasers, Laser Focus 9, Sept., 39–49 (1973).Google Scholar
  25. 25.
    Bell Lab. Rec.48, Dec, 343 (1970).Google Scholar
  26. 26.
    H. Kressel, H. F. Lockwood, and M. Ettenberg, Progress in laser diodes, IEEE Spectrum 10, May, 59–64 (1973).CrossRefGoogle Scholar
  27. 27.
    Microwaves12, Mar., 12 (1973).Google Scholar
  28. 28.
    Ind. Res.12 (11), 33 (1970).Google Scholar
  29. 29.
    B. B. Snavely, Yale Sci. 47, Dec, 9 (1972).Google Scholar
  30. 30.
    Lasersphere3, Aug. 15, 20 (1973).Google Scholar

Copyright information

© Plenum Press, New York 1975

Authors and Affiliations

  • Winston E. Kock
    • 1
  1. 1.The Herman Schneider Laboratory of Basic and Applied Science ResearchUniversity of CincinnatiCincinnatiUSA

Personalised recommendations