Computing Applications

  • Winston E. Kock
Part of the Optical Physics and Engineering book series (OPEG)


One important field of laser application involves their use in optical processing, an area now often referred to as optical computing. In this field use is often made of the Fourier transform property of a lens and the associated filtering procedure called spatial filtering. To introduce these and related concepts dealing with the electro-optical processing of information, we will review several applications of Fourier analysis, Fourier series, and the Fourier transform.


Object Plane Optical Memory Optical Processing Computing Application Strontium Titanate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    W. E. Kock, Aehnlichkeit zwischen Vokal-formanten und Formanten von Musik-Instrumenten, ETZ 5, 166 (1953).Google Scholar
  2. 2.
    W. E. Kock, Seeing Sound, Wiley, New York, 1971, p. 58.Google Scholar
  3. 3.
    R. K. Potter, G. S. Kopp, and H. C. Green, Visible Speech, Van Nostrand, Princeton, N.J., 1947.Google Scholar
  4. 4.
    G. Runge, Z. Math. Phys. XVII, 443 (1903).Google Scholar
  5. 5.
    W. E. Kock, University of Cincinnati, E.E. Thesis, 1932.Google Scholar
  6. 6.
    J. Lipka, Graphical and Mechanical Computation, Wiley, New York, 1921, p. 184.Google Scholar
  7. 7.
    J. W. Cooley and J. W. Tukey, An algorithm for the machine calculation of complex Fourier series, Math. Comp. 19, 297–310 (1965).CrossRefGoogle Scholar
  8. 8.
    G. D. Bergland, A guided tour of the fast Fourier transform, IEEE Spectrum 6, July, 41–52 (1969).CrossRefGoogle Scholar
  9. 9.
    H. Stenzel, Leitfaden zur Berechnung von Schallvorgaengen, Springer, Berlin, 1939, p. 59.CrossRefGoogle Scholar
  10. 10.
    K. Osterhammel, Optische Untersuchung des Shallfeldes Kolbenfoermig Quarze, Akust. Z. 6, 82 (1941).Google Scholar
  11. 11.
    W. E. Kock, Unpublished Bell Telephone Laboratories memorandum, March 1948.Google Scholar
  12. 12.
    W. E. Kock and J. L. Stone, Space frequency equivalence, Proc. IRE 46, 499–500 (1958).Google Scholar
  13. 13.
    W. E. Kock, Related experiments with sound waves and electromagnetic waves, Akoustische Beihefte 1, 227–238 (1959) [also appeared in Proc. IRE 47, 1192–1201 (1959)].Google Scholar
  14. 14.
    D. G. Tucker, Space-frequency equivalence in directional arrays, Proc. IEE 109C, 191–197 (1962).Google Scholar
  15. 15.
    M. I. Skolnik, Application of space frequency equivalence to radar, paper presented at the IRE convention, 1962.Google Scholar
  16. 16.
    L. B. Lesem, P. M. Hirsch, and J. A. Jordan Jr., The promise of the kinoform, Opt. Spectra 4, December (1970), 18–21.Google Scholar
  17. 17.
    Lord Rayleigh, On the theory of optical images with special reference to the microscope, Phil. Mag. 42 (1896), 167–195.Google Scholar
  18. 18.
    R. W. Wood, Physical Optics, 3rd ed., Macmillan, New York, 1934, pp. 277–279.Google Scholar
  19. 19.
    K. Preston Jr., Electronics 38, 62 (1965).Google Scholar
  20. 20.
    S. P. McGrew, A proposed active optical computer, paper presented at the NATO Advanced Study Institute, June, 1973, Capri, Italy (Director Professor E. R. Cianiello).Google Scholar
  21. 21.
    E. Abbe, Beiträge zur Theorie des Mikroskops und der mikroskopischen Wahrnehmung, Archiv Mikrosk. Anat. 9, 413–468 (1873).CrossRefGoogle Scholar
  22. 22.
    A. Marechal and P. Croce, Un filtre de frequences spatiales pour l’amelioration du contraste des images optiques, C. R. Acad. Sci. 237, 607–609 (1953).Google Scholar
  23. 23.
    L. J. Cutrona, E. N. Leith, C. J. Palermo, and L. J. Porcello, Optical data processing and filtering, IRE Trans. Inf. Theory, IT6 (3), 386–400 (1960).CrossRefGoogle Scholar
  24. 24.
    E. L. O’Neill, Introduction to Statistical Optics, Addison-Wesley, Reading, Mass., 1963.Google Scholar
  25. 25.
    M. B. Dobrin, Optical processing in the earth sciences, IEEE Spectrum 5, Sept., 59–66 (1968).CrossRefGoogle Scholar
  26. 26.
    M. B. Dobrin, A. L. Ingalls, and J. A. Long, Velocity and frequency filtering of seismic data using laser light, Geophysics 30 (6), 1144–1178 (1965).Google Scholar
  27. 27.
    G. W. Stroke, Etude theorique et experimentale de deux aspects de la diffraction par les reseaux optiques, Rev. Opt. 39, 291–396 (1960).Google Scholar
  28. 28.
    G. W. Stroke, An Introduction to Coherent Optics and Holography, Academic Press, New York, 1969, pp. 3–4.Google Scholar
  29. 29.
    A. Vander Lugt, Signal detection by complex spatial filtering, IEEE Trans. Inf. Theory, 10, 145–153 (1964).CrossRefGoogle Scholar
  30. 30.
    J. Tsujiuchi, in: Progress in Optics, North Holland, Amsterdam, 1963, Vol. 2, p. 133.Google Scholar
  31. 31.
    E. N. Leith, A. Kozma, and J. Upatnieks, in: Optical and Electrooptical Information Processing, M.I.T. Press, Cambridge, Mass., 1965.Google Scholar
  32. 32.
    G. W. Stroke and R. G. Zech, A posteriori image correcting “Deconvolution” by holographic Fourier-transform division, Phys. Lett. A 25, 89–90 (1967).CrossRefGoogle Scholar
  33. 33.
    R. H. Dicke, Astrophys. J. 153, 101–106 (1968).CrossRefGoogle Scholar
  34. 34.
    G. W. Stroke, Phys. Lett. A 27, 252–253 (1968).CrossRefGoogle Scholar
  35. 35.
    G. W. Stroke, Phys. Lett. A 27, 405–406 (1968).CrossRefGoogle Scholar
  36. 36.
    G. W. Stroke, F. Furrer, and D. R. Lamberty, Opt. Commun. July/Aug., 141–145 (1969).Google Scholar
  37. 37.
    S. G. McCarthy and I. Roth, Sperry Eng. Rev. 1, 41–45 (1966).Google Scholar
  38. 38.
    E. N. Leith, Optical processing techniques for simultaneous pulse compression and beam sharpening, IEEE Trans. Aerosp. Electron. Syst. 4, 879–885 (1968).CrossRefGoogle Scholar
  39. 39.
    G. W. Stroke, Optical computing, IEEE Spectrum 9, Dec, 24–41 (1972).CrossRefGoogle Scholar
  40. 40.
    L. J. Cutrona, E. N. Leith, L. J. Porcello and W. E. Vivian, On the application of coherent optical processing techniques to synthetic-aperture radar, Proc. IEE 54 (8), 1026–1032 (1966).CrossRefGoogle Scholar
  41. 41.
    W. E. Kock, Holographic computing in radar and ultrasonics, IEEE Comput. Soc. Dig. Apr., (1972).Google Scholar
  42. 42.
    W. E. Kock, Parallel processing in synthetic aperture systems, in: New Concepts and Technologies in Parallel Information Processing, NATO Advanced Study Institute, Nordhoff International Publ., Groningen, The Netherlands, 1974 (Prof. E. R. Cianiello, ed.).Google Scholar
  43. 43.
    W. E. Kock, Optical computing in synthetic aperture radar, Proc. Soc. Inf. Disp., 15/3 (3rd quarter), 112–118 (1974).Google Scholar
  44. 44.
    W. E. Kock, A real time parallel optical processing technique, IEEE Trans. Comput. (Special Issue on Optical Computing) C-24, Apr., 407–411 (1975).CrossRefGoogle Scholar
  45. 45.
    K. Preston Jr., Digital holographic logic, Digest Opt. Comput. Symp. Darien, Conn., Apr. 1972.Google Scholar
  46. 46.
    J. Feinleib, Optical processing in real time, Laser Focus 9, Sept., 42–44 (1973).Google Scholar
  47. 47.
    G. Marie, Philips Res. Rep. 22, 119 (1967).Google Scholar
  48. 48.
    D. Casasent, Applications of a real time hybrid computing system, in: IEEE Digest of Papers, 1974 International Optical Computing Conf, Zurich, Apr. 9–11, 1974, pp. 18–22.Google Scholar
  49. 49.
    B. R. Brown and A. W. Lohmann, Complex spatial filtering with binary masks, Appl. Opt. 5 (6), 967–969 (1966).CrossRefGoogle Scholar
  50. 50.
    B. R. Brown and A. W. Lohmann, Computer generated binary holograms, IBM J. Res. Dev. 13, 160–168 (1969).CrossRefGoogle Scholar
  51. 51.
    O. N. Tufte and D. Chen, Optical techniques for data storage, IEEE Spectrum 10, Feb., 25–32 (1973).Google Scholar
  52. 52.
    L. K. Anderson, Holographic optical memory for bulk data storage, Bell Lab. Rec. 46, 318 (1968).Google Scholar
  53. 53.
    R. J. Collier, C. B. Burckhart and L. H. Lin, Optical Holography, Academic Press, New York, pp. 476–488.Google Scholar
  54. 54.
    A. L. Mikaeliane, V. I. Bobrinev, S. M. Naumov, and L. Z. Sokolova, Principles of holographic memory devices, paper presented at the IEEE Conference on Laser Applications, May 26–28, 1969.Google Scholar
  55. 55.
    D. H. McMahon, Holographic Ultrafiche, Appl. Opt. 11, 798–806 (1972).CrossRefGoogle Scholar
  56. 56.
    Electron. News16, June 14, 38 (1971).Google Scholar
  57. 57.
    Lasersphere1, Nov. 15, 1 (1971).Google Scholar
  58. 58.
    IEEE Spectrum10, Nov., 34 (1973).Google Scholar
  59. 59.
    Ind. Res.16 (6), 58 (1974).Google Scholar
  60. 60.
    E. N. Leith, A. Kozma, J. Upatnieks, J. Marks, and N. Massey, Holographic data storage in three-dimensional media, Appl. Opt. 5, 1303–1311 (1966).CrossRefGoogle Scholar
  61. 61.
    M. R. Tubbs, Holographic storage, Opt. Spectra 7, Apr., 5–10 (1973).Google Scholar
  62. 62.
    J. J. Amodei and D. R. Bosomworth, Hologram storage and retrieval in photo-chromic strontium titanate crystals, Appl. Opt. 8, 2473 (1969).CrossRefGoogle Scholar
  63. 63.
    J. C. Urbach and R. W. Meier, Thermo-plastic Xerographic holography, Appl. Opt. 5, 666 (1966).CrossRefGoogle Scholar
  64. 64.
    J. T. LaMacchia, Holographic storage in ferro electrics, paper presented at the Joint IEEE CVA Symposium on Applications of Ferroelectrics, Oct. 1968.Google Scholar
  65. 65.
    Ind. Res.15 (11), 21 (1973).Google Scholar
  66. 66.
    Laser Focus10, Feb., 30 (1974).Google Scholar
  67. 67.
    The Fifth Holography School, Feb. 1973, held at Akademgorodok, Novosibirsk, Siberia,Google Scholar
  68. 68.
    Lasersphere1, Nov. 15, 1 (1971).Google Scholar
  69. 69.
    Opt. Spectra7, Apr., 24–25 (1973).Google Scholar
  70. 70.
    Electronics47, Sept. 5, 53 (1974).Google Scholar
  71. 71.
    H. Ruell and H. Kiemle, Opt. Commun. 7, 158 (1973).CrossRefGoogle Scholar
  72. 72.
    H. Kiemle, Considerations of holographic memories in the gigabyte region, Appl. Opt. 13, 803–807 (1974).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1975

Authors and Affiliations

  • Winston E. Kock
    • 1
  1. 1.The Herman Schneider Laboratory of Basic and Applied Science ResearchUniversity of CincinnatiCincinnatiUSA

Personalised recommendations