Skip to main content

Part of the book series: Optical Physics and Engineering ((OPEG))

  • 257 Accesses

Abstract

One important field of laser application involves their use in optical processing, an area now often referred to as optical computing. In this field use is often made of the Fourier transform property of a lens and the associated filtering procedure called spatial filtering. To introduce these and related concepts dealing with the electro-optical processing of information, we will review several applications of Fourier analysis, Fourier series, and the Fourier transform.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. W. E. Kock, Aehnlichkeit zwischen Vokal-formanten und Formanten von Musik-Instrumenten, ETZ 5, 166 (1953).

    Google Scholar 

  2. W. E. Kock, Seeing Sound, Wiley, New York, 1971, p. 58.

    Google Scholar 

  3. R. K. Potter, G. S. Kopp, and H. C. Green, Visible Speech, Van Nostrand, Princeton, N.J., 1947.

    Google Scholar 

  4. G. Runge, Z. Math. Phys. XVII, 443 (1903).

    Google Scholar 

  5. W. E. Kock, University of Cincinnati, E.E. Thesis, 1932.

    Google Scholar 

  6. J. Lipka, Graphical and Mechanical Computation, Wiley, New York, 1921, p. 184.

    Google Scholar 

  7. J. W. Cooley and J. W. Tukey, An algorithm for the machine calculation of complex Fourier series, Math. Comp. 19, 297–310 (1965).

    Article  Google Scholar 

  8. G. D. Bergland, A guided tour of the fast Fourier transform, IEEE Spectrum 6, July, 41–52 (1969).

    Article  Google Scholar 

  9. H. Stenzel, Leitfaden zur Berechnung von Schallvorgaengen, Springer, Berlin, 1939, p. 59.

    Book  Google Scholar 

  10. K. Osterhammel, Optische Untersuchung des Shallfeldes Kolbenfoermig Quarze, Akust. Z. 6, 82 (1941).

    Google Scholar 

  11. W. E. Kock, Unpublished Bell Telephone Laboratories memorandum, March 1948.

    Google Scholar 

  12. W. E. Kock and J. L. Stone, Space frequency equivalence, Proc. IRE 46, 499–500 (1958).

    Google Scholar 

  13. W. E. Kock, Related experiments with sound waves and electromagnetic waves, Akoustische Beihefte 1, 227–238 (1959) [also appeared in Proc. IRE 47, 1192–1201 (1959)].

    Google Scholar 

  14. D. G. Tucker, Space-frequency equivalence in directional arrays, Proc. IEE 109C, 191–197 (1962).

    Google Scholar 

  15. M. I. Skolnik, Application of space frequency equivalence to radar, paper presented at the IRE convention, 1962.

    Google Scholar 

  16. L. B. Lesem, P. M. Hirsch, and J. A. Jordan Jr., The promise of the kinoform, Opt. Spectra 4, December (1970), 18–21.

    Google Scholar 

  17. Lord Rayleigh, On the theory of optical images with special reference to the microscope, Phil. Mag. 42 (1896), 167–195.

    Google Scholar 

  18. R. W. Wood, Physical Optics, 3rd ed., Macmillan, New York, 1934, pp. 277–279.

    Google Scholar 

  19. K. Preston Jr., Electronics 38, 62 (1965).

    Google Scholar 

  20. S. P. McGrew, A proposed active optical computer, paper presented at the NATO Advanced Study Institute, June, 1973, Capri, Italy (Director Professor E. R. Cianiello).

    Google Scholar 

  21. E. Abbe, Beiträge zur Theorie des Mikroskops und der mikroskopischen Wahrnehmung, Archiv Mikrosk. Anat. 9, 413–468 (1873).

    Article  Google Scholar 

  22. A. Marechal and P. Croce, Un filtre de frequences spatiales pour l’amelioration du contraste des images optiques, C. R. Acad. Sci. 237, 607–609 (1953).

    Google Scholar 

  23. L. J. Cutrona, E. N. Leith, C. J. Palermo, and L. J. Porcello, Optical data processing and filtering, IRE Trans. Inf. Theory, IT6 (3), 386–400 (1960).

    Article  Google Scholar 

  24. E. L. O’Neill, Introduction to Statistical Optics, Addison-Wesley, Reading, Mass., 1963.

    Google Scholar 

  25. M. B. Dobrin, Optical processing in the earth sciences, IEEE Spectrum 5, Sept., 59–66 (1968).

    Article  Google Scholar 

  26. M. B. Dobrin, A. L. Ingalls, and J. A. Long, Velocity and frequency filtering of seismic data using laser light, Geophysics 30 (6), 1144–1178 (1965).

    Google Scholar 

  27. G. W. Stroke, Etude theorique et experimentale de deux aspects de la diffraction par les reseaux optiques, Rev. Opt. 39, 291–396 (1960).

    Google Scholar 

  28. G. W. Stroke, An Introduction to Coherent Optics and Holography, Academic Press, New York, 1969, pp. 3–4.

    Google Scholar 

  29. A. Vander Lugt, Signal detection by complex spatial filtering, IEEE Trans. Inf. Theory, 10, 145–153 (1964).

    Article  Google Scholar 

  30. J. Tsujiuchi, in: Progress in Optics, North Holland, Amsterdam, 1963, Vol. 2, p. 133.

    Google Scholar 

  31. E. N. Leith, A. Kozma, and J. Upatnieks, in: Optical and Electrooptical Information Processing, M.I.T. Press, Cambridge, Mass., 1965.

    Google Scholar 

  32. G. W. Stroke and R. G. Zech, A posteriori image correcting “Deconvolution” by holographic Fourier-transform division, Phys. Lett. A 25, 89–90 (1967).

    Article  Google Scholar 

  33. R. H. Dicke, Astrophys. J. 153, 101–106 (1968).

    Article  Google Scholar 

  34. G. W. Stroke, Phys. Lett. A 27, 252–253 (1968).

    Article  Google Scholar 

  35. G. W. Stroke, Phys. Lett. A 27, 405–406 (1968).

    Article  Google Scholar 

  36. G. W. Stroke, F. Furrer, and D. R. Lamberty, Opt. Commun. July/Aug., 141–145 (1969).

    Google Scholar 

  37. S. G. McCarthy and I. Roth, Sperry Eng. Rev. 1, 41–45 (1966).

    Google Scholar 

  38. E. N. Leith, Optical processing techniques for simultaneous pulse compression and beam sharpening, IEEE Trans. Aerosp. Electron. Syst. 4, 879–885 (1968).

    Article  Google Scholar 

  39. G. W. Stroke, Optical computing, IEEE Spectrum 9, Dec, 24–41 (1972).

    Article  Google Scholar 

  40. L. J. Cutrona, E. N. Leith, L. J. Porcello and W. E. Vivian, On the application of coherent optical processing techniques to synthetic-aperture radar, Proc. IEE 54 (8), 1026–1032 (1966).

    Article  Google Scholar 

  41. W. E. Kock, Holographic computing in radar and ultrasonics, IEEE Comput. Soc. Dig. Apr., (1972).

    Google Scholar 

  42. W. E. Kock, Parallel processing in synthetic aperture systems, in: New Concepts and Technologies in Parallel Information Processing, NATO Advanced Study Institute, Nordhoff International Publ., Groningen, The Netherlands, 1974 (Prof. E. R. Cianiello, ed.).

    Google Scholar 

  43. W. E. Kock, Optical computing in synthetic aperture radar, Proc. Soc. Inf. Disp., 15/3 (3rd quarter), 112–118 (1974).

    Google Scholar 

  44. W. E. Kock, A real time parallel optical processing technique, IEEE Trans. Comput. (Special Issue on Optical Computing) C-24, Apr., 407–411 (1975).

    Article  Google Scholar 

  45. K. Preston Jr., Digital holographic logic, Digest Opt. Comput. Symp. Darien, Conn., Apr. 1972.

    Google Scholar 

  46. J. Feinleib, Optical processing in real time, Laser Focus 9, Sept., 42–44 (1973).

    Google Scholar 

  47. G. Marie, Philips Res. Rep. 22, 119 (1967).

    Google Scholar 

  48. D. Casasent, Applications of a real time hybrid computing system, in: IEEE Digest of Papers, 1974 International Optical Computing Conf, Zurich, Apr. 9–11, 1974, pp. 18–22.

    Google Scholar 

  49. B. R. Brown and A. W. Lohmann, Complex spatial filtering with binary masks, Appl. Opt. 5 (6), 967–969 (1966).

    Article  Google Scholar 

  50. B. R. Brown and A. W. Lohmann, Computer generated binary holograms, IBM J. Res. Dev. 13, 160–168 (1969).

    Article  Google Scholar 

  51. O. N. Tufte and D. Chen, Optical techniques for data storage, IEEE Spectrum 10, Feb., 25–32 (1973).

    Google Scholar 

  52. L. K. Anderson, Holographic optical memory for bulk data storage, Bell Lab. Rec. 46, 318 (1968).

    Google Scholar 

  53. R. J. Collier, C. B. Burckhart and L. H. Lin, Optical Holography, Academic Press, New York, pp. 476–488.

    Google Scholar 

  54. A. L. Mikaeliane, V. I. Bobrinev, S. M. Naumov, and L. Z. Sokolova, Principles of holographic memory devices, paper presented at the IEEE Conference on Laser Applications, May 26–28, 1969.

    Google Scholar 

  55. D. H. McMahon, Holographic Ultrafiche, Appl. Opt. 11, 798–806 (1972).

    Article  Google Scholar 

  56. Electron. News16, June 14, 38 (1971).

    Google Scholar 

  57. Lasersphere1, Nov. 15, 1 (1971).

    Google Scholar 

  58. IEEE Spectrum10, Nov., 34 (1973).

    Google Scholar 

  59. Ind. Res.16 (6), 58 (1974).

    Google Scholar 

  60. E. N. Leith, A. Kozma, J. Upatnieks, J. Marks, and N. Massey, Holographic data storage in three-dimensional media, Appl. Opt. 5, 1303–1311 (1966).

    Article  Google Scholar 

  61. M. R. Tubbs, Holographic storage, Opt. Spectra 7, Apr., 5–10 (1973).

    Google Scholar 

  62. J. J. Amodei and D. R. Bosomworth, Hologram storage and retrieval in photo-chromic strontium titanate crystals, Appl. Opt. 8, 2473 (1969).

    Article  Google Scholar 

  63. J. C. Urbach and R. W. Meier, Thermo-plastic Xerographic holography, Appl. Opt. 5, 666 (1966).

    Article  Google Scholar 

  64. J. T. LaMacchia, Holographic storage in ferro electrics, paper presented at the Joint IEEE CVA Symposium on Applications of Ferroelectrics, Oct. 1968.

    Google Scholar 

  65. Ind. Res.15 (11), 21 (1973).

    Google Scholar 

  66. Laser Focus10, Feb., 30 (1974).

    Google Scholar 

  67. The Fifth Holography School, Feb. 1973, held at Akademgorodok, Novosibirsk, Siberia,

    Google Scholar 

  68. Lasersphere1, Nov. 15, 1 (1971).

    Google Scholar 

  69. Opt. Spectra7, Apr., 24–25 (1973).

    Google Scholar 

  70. Electronics47, Sept. 5, 53 (1974).

    Google Scholar 

  71. H. Ruell and H. Kiemle, Opt. Commun. 7, 158 (1973).

    Article  Google Scholar 

  72. H. Kiemle, Considerations of holographic memories in the gigabyte region, Appl. Opt. 13, 803–807 (1974).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1975 Plenum Press, New York

About this chapter

Cite this chapter

Kock, W.E. (1975). Computing Applications. In: Engineering Applications of Lasers and Holography. Optical Physics and Engineering. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-2160-6_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-2160-6_15

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-2162-0

  • Online ISBN: 978-1-4684-2160-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics