Acoustic Holography Applications

  • Winston E. Kock
Part of the Optical Physics and Engineering book series (OPEG)


Since a hologram is a photographic record of the interference pattern generated between a set of waves of interest and a set of reference waves, it is obviously possible to make holograms of other forms of wave motion, provided the wave interference pattern can somehow be recorded. We saw earlier that visual presentations of wave progression for sound waves could indeed be recorded photographically (e.g., Figure 1.6) and that the process for doing this involved using a second set of waves as a reference set (Figure 1.5). We accordingly noted that figures such as Figure 1.7, 1.8, and 1.21, etc. can be regarded as acoustic holograms since they are recordings of interference patterns between waves of interest and a set of plane reference waves. The striations in these figures are acoustic fringes, exactly like the optical fringes formed when coherent light waves interfere. For those fringe patterns, no reconstruction process was performed, as the interest in those cases was in the fringe patterns themselves (the wave progression patterns). Nevertheless, to record acoustic fringe patterns for hologram use, the same technique is applicable, and acoustic holograms and their reconstructions have been made in this way in numerous laboratories.


Sound Wave Fringe Pattern Reference Wave Zone Plate Sonar System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Lord Rayleigh, Theory of Sound, Dover, New York, 1945, Vol. 11, p. 142.Google Scholar
  2. 2.
    Photographing sound waves, Bell Lab. Rec. July, 304–306 (1950).Google Scholar
  3. 3.
    A. F. Metherell and S. Spinak, Acoustical holography of non-existent wavefronts detected at a single point in space, Appl. Phys. Lett. 13 (22), (1968).Google Scholar
  4. 4.
    V. L. Neeley, Source scanning holography, Phys. Lett. A 28 (7), 475–476 (1968).CrossRefGoogle Scholar
  5. 5.
    Holographic movies, Laser Focus 1 (17), 8–9 (1965).Google Scholar
  6. 6.
    H. Kiemle and D. Ross, Einführung in die Technik der Holographie, Akademische Verlagsgesellschaft, 1969, p. 17.Google Scholar
  7. 7.
    F. L. Thurstone, Ultrasound holography and visual reconstruction, Proc. Symp. Biomed. Eng. (Milwaukee, Wisc.) 1, 12–15 (1966).Google Scholar
  8. 8.
    R. K. Mueller and N. K. Sheridon, Sound holograms and optical reconstruction, Appl. Phys. Lett. 9, 328 (1966).CrossRefGoogle Scholar
  9. 9.
    J. L. Kreutzer, Ultrasonic three-dimensional imaging using holographic techniques, paper presented at the Symposium on Modern Optics, New York, Mar. 22–24, 1967.Google Scholar
  10. 10.
    S. Sokolov, U.S. patent 2,164,125, June 27, 1939.Google Scholar
  11. 11.
    E. Marom, D. Fritzler, and R. K. Mueller, Appl. Phys. Lett. 12, 26 (1968).CrossRefGoogle Scholar
  12. 12.
    R. K. Mueller, E. Marom, and D. Fritzler, Appl. Phys. Lett. 12, 394 (1968).CrossRefGoogle Scholar
  13. 13.
    A. F. Metherell, Temporal reference holography, Appl. Phys. Lett. 13, 10 (1968).Google Scholar
  14. 14.
    J. J. Flaherty, K. R. Erikson, and V. M. Lund, Synthetic aperture ultrasonic imaging systems, U.S. patent 3,548,642, Dec. 22, 1970 (filed Mar. 2, 1967).Google Scholar
  15. 15.
    D. F. Pekau and R. Diehl, Recording of one-dimensional holograms as a function of object range, paper presented at the International Symposium Applications of Holography, Besancon, France, July 6–11, 1970.Google Scholar
  16. 16.
    C. B. Burckhardt, P. Grandchamp, and H. Hoffmann, An experimental 2 MHz synthetic aperture system intended for medical use, IEEE Trans. Sonics Ultrason. SU-21, Jan., 1–6 (1974).CrossRefGoogle Scholar
  17. 17.
    M. S. McGehee, Modular aperture sonar progress report, M.P.L. technical memorandum 213, Apr. 1, 1970.Google Scholar
  18. 18.
    B. P. Parkins and G. R. Fox, Measurement of the coherence and fading of long-range acoustic signals, IEEE Trans. Audio Electroacoust. AV-19, 158–165 (1971).CrossRefGoogle Scholar
  19. 19.
    G. S. Bennett, W. E. Kock, E. J. McGlinn Jr., Internal Bendix Research Laboratories Report 1255, July 1959.Google Scholar
  20. 20.
    R. H Nichols and H. J. Young, Fluctuations in low-frequency acoustic propagation in the ocean, J. Acoust. Soc. Am. 43, 716–723 (1968).CrossRefGoogle Scholar
  21. 21.
    B. R. Brown and A. W. Lohmann, Complex spatial filtering and binary masks, Appl. Opt. 5, 967 (1966).CrossRefGoogle Scholar
  22. 22.
    A. W. Lohmann and D. Paris, Binary fraunhofer holograms generated by a computer, Appl. Opt. 6, 1739 (1967).CrossRefGoogle Scholar
  23. 23.
    B. R. Brown and A. W. Lohmann, Computer-generated binary holograms, IBM J. Res. Dev. 13, 130 (1969).CrossRefGoogle Scholar
  24. 24.
    L. B. Lesem, P. M. Hirsch, and J. A. Jordan, Jr., The kinoform: A new wavefront reconstruction device, IBM J. Res. Dev. 13, 150–155 (1969).CrossRefGoogle Scholar
  25. 25.
    J. A. Jordan, Jr., P. M. Hirsch, L. B. Lesem, and D. L. Van Rooy, Appl. Opt. 9, (1970).Google Scholar
  26. 26.
    W. E. Kock, Experiments with metal plate lenses for microwaves, Internal Bell Telephone Laboratories memorandum mm 44–160–67, Mar. 27, 1944 (secret; since declassified).Google Scholar
  27. 27.
    R. J. Collier, C. B. Burckhardt, and L. H. Lin, Optical Holography, Academic Press, New York, 1971, pp. 345–351.Google Scholar
  28. 28.
    W. E. Kock, Metal lens antennas, Proc. IRE 34, 828 (1946).CrossRefGoogle Scholar
  29. 29.
    W. E. Kock. Appl. Opt. 11, 1653–1654 (1972).CrossRefGoogle Scholar
  30. 30.
    A. L. Boyer, P. M. Hirsch, J. A. Jordan, Jr., L. B. Lesem, and D. L. Van Rooy, Kinoform mirror for acoustic imaging, IBM Publ. 2220–6100, June 18, 1970.Google Scholar
  31. 31.
    F. Tuttle and W. E. Kock, A holographic pulse compression technique employing amplitude modulation, Proc. IEEE 58 (1), 170 (1970).CrossRefGoogle Scholar
  32. 32.
    J. R. Klauder, A. C. Price, S. Darlington, and W. J. Albersheim, The theory and design of chirp radar, Bell Syst. Tech. J. 39, 745 (1960).Google Scholar
  33. 33.
    W. E. Kock, Holographic amplitude pulse compression for synthetic aperture radar, Proc. IEEE 58, 1773–1774 (1970).CrossRefGoogle Scholar
  34. 34.
    E. N. Leith, Optical processing techniques for simultaneous pulse compression and beam sharpening, IEEE Trans. Aerosp. Electron. Syst. AES-4, 879–885 (1968).CrossRefGoogle Scholar
  35. 35.
    W. E. Kock, Bistatic Microwave or acoustic holography using incoherent illumination, Proc. IEEE (Lett.) 61, Oct. (1973).Google Scholar
  36. 36.
    W. E. Kock, Seeing Sound, Wiley-Interscience, New York, 1971.Google Scholar
  37. 37.
    W. E. Kock, Radar, Sonar, and Holography, Academic Press, New York, 1973. (FFT methods are described in this work).Google Scholar
  38. 38.
    G. D. Bergland, A guided tour of the fast Fourier transform, IEEE Spectrum, 6, 41–52 (1969).CrossRefGoogle Scholar
  39. 39.
    M. B. Dobrin, A. L. Ingalls, and J. A. Long, Velocity and frequency filtering of seismic data using laser light, Geophysics 30 (6), 1144–1178 (1965).Google Scholar
  40. 40.
    D. Silverman, Wavelet reconstruction process for sonic seismic, and radar explorations, U.S. patent 3,400,363, Sept. 3, 1968.Google Scholar
  41. 41.
    W. E. Lerwill, Holography at seismic frequencies, paper presented at the European Association Exploration Geophysical Conference, Venice, Italy, 1969.Google Scholar
  42. 42.
    R. K. Mueller, Acoustic holography, invited paper, Proc. IEEE 59 (9), 1319–1335 (1971).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1975

Authors and Affiliations

  • Winston E. Kock
    • 1
  1. 1.The Herman Schneider Laboratory of Basic and Applied Science ResearchUniversity of CincinnatiCincinnatiUSA

Personalised recommendations