Advertisement

Operational Safety Considerations

  • Charles W. Shilling
  • Margaret F. Werts
  • Nancy R. Schandelmeier

Abstract

Underwater activity confronts man with forces and resulting physiological effects that are not encountered in his normal terrestrial environment. “These forces impose definite limits and can cause serious accidents. The diver’s safety depends upon his knowledge of these factors and his ability to recognize and handle them” (U. S. Navy 1970).

Keywords

Burning Rate Decompression Sickness Fire Hazard Chapter VIII Blast Injury 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alvis, H. J. Submarine rescue and escape. Arch. Ind. Hyg.6:293–304 (1952).Google Scholar
  2. Anonymous.Lancet (1): 468-469 (Mar. 3, 1962).Google Scholar
  3. Ault, W. E., and D. I. Carter. The influence of hyperbaric chamber pressure on water-spray patterns. Fire J.61:48 (1967).Google Scholar
  4. Bachrach, A. J. Diving behavior. In: Human Performance and Scuba Diving. Proceedings of the Symposium on Underwater Physiology, Scripps Institute of Oceanography, La Jolla, Calif., April 10–11, 1970, pp. 119–138. Chicago, The Athletic Institute (1970).Google Scholar
  5. Bailey, V. R., J. Lacerda, and J. F. Manuel. Diver lockout and observation submersibles. A perspective of participation in offshore operations. In: 1972 Offshore Technology Conference May 1–3, Houston, Texas. Preprints, Vol. I, pp. 547–553. Published by the Conference (1972).Google Scholar
  6. Barnard, E. E. P. Submarine escape from 600 feet (183 metres). Proc. Roy. Soc. Med.64:1271–1273 (Dec. 1971).Google Scholar
  7. Barrow, D. W., and H. Y. Rhoads. Blast concussion injury. J.A.M.A.125:900–902 (1944).CrossRefGoogle Scholar
  8. Behnke, A. R., Jr. Reaction 1 (to paper on Diving Behavior). In: Human Performance and Scuba Diving. Proceedings of the Symposium on Underwater Physiology, Scripps Institute of Oceanography, La Jolla, Calif., April 1970, pp. 139–143. Chicago, The Athletic Institute (1970).Google Scholar
  9. Benzinger, T. In: German Aviation Medicine. World War II. Vol II, p. 1225. Washington, D.C. U. S. Government Printing Office (1950).Google Scholar
  10. Benzinger, T. Causes of death from blast. Amer. J. Physiol.167:767 (Dec. 1951).Google Scholar
  11. Blair, W. C. Human factors in deep submergence vehicles. Mar. Technol. Soc. J.3:37–46 (Sept/Oct. 1969).Google Scholar
  12. Bond, G. F. Safety factors in chamber operations. In: Fundamentals of Hyperbaric Medicine, pp. 141–143. Washington, D. C., National Academy of Sciences-National Research Council (1966) (Publ. 1298).Google Scholar
  13. Botieri, P. B. Fire protection for oxygen enriched atmosphere applications. In: Proceedings of Fire Hazards and Extinguishment Conference, pp. 39-69. Brooks AFB, Texas, Air Force Syst. Command, Rep. AMD-TR-67-2 (May 23, 1967).Google Scholar
  14. Bühlmann, A. A., R. Schibli, and D. Gehring. Experimentelle Undersuchungen uber die Dekrompression nach Tauchgangen in Bergseen bie verminder tem Luftdruck. Schweiz Med. Wochenschr.103:378–383 (Mar. 10, 1973).Google Scholar
  15. Burton, R. Helgoland underwater laboratory. In: Sea Frontiers17:335–341 (Nov./Dec. 1971).Google Scholar
  16. Camishion, R. C. Electrical hazards in the research laboratory. J. Surg. Res.6(5): 221–227 (May 1966).CrossRefGoogle Scholar
  17. Carter, D. I. Fire extinguishment and protective clothing evaluations. In: Proceedings of Fire Hazards and Extinguishment Conference, pp. 69-105. Brooks AFB, Texas, Air Force Syst. Command, AMD-TR-67-2 (May 23, 1967).Google Scholar
  18. Christian, E. A., and J. B. Gaspin. Swimmer safe standoffs from underwater explosions. U. S. Nav. Ordn. Lab., Rep. NOLX-80 (1974).Google Scholar
  19. Ciria Underwater Engineering Group. The Principles of Safe Diving Practice 1972. London, CIRIA Underwater Engineering Group (1972).Google Scholar
  20. Clemedson, C. J. An experimental study on air blast injuries. Acta Physiol. Scand.18(Suppl. 61): 1–220 (1949).Google Scholar
  21. Clemedson, C. J. Blast injury. Physiol. Rev.36(3): 336–354 (July 1956).Google Scholar
  22. Clemedson, C. J., and S. A. Granstom. Studies of the genesis of “rib markings ” in lung blast injury. Acta. Physiol. Scand.21(2–3):131–144 (1950).CrossRefGoogle Scholar
  23. Cole, R. H. Underwater Explosions. New York, Dover Publications (1965).Google Scholar
  24. Committee On Amphibious Operations. Effects of underwater blast. In: Revelle, R., chm. Panel on Underwater Swimmers. Washington, D.C. National Academy of Sciences-National Research Council (1952).Google Scholar
  25. Cook, G. A. Combustion safety in diving atmospheres. In: Proceedings of Fire Hazards and Extinguishment Conference, pp. 139-147. Brooks AFB, Texas, Air Force Syst. Command, Rep. AMD-TR-67-2 (May 23, 1967).Google Scholar
  26. Cook, G. A., R. E. Meierer, and B. M. Shields. Screening of flame-resistant materials and comparison of helium and nitrogen for use in diving atmospheres. Tonawanda, N. Y., Union Carbide Corp., First Summary Rep. on Contr. N00014-66-C-0149 (Mar. 21, 1967a).Google Scholar
  27. Cook, G. A., R. E. Meierer, and B. M. Shields. Combustibility tests on several flame-resistant fabrics in compressed air, oxygen-enriched air, and pure oxygen. Text. Res. J.7:591–599 (July 1967b).CrossRefGoogle Scholar
  28. Cook, G. A., R. E. Meierer, B. M. Shields, and H. E. Nevins. Effects of gas composition on burning rates inside decompression chambers up to 300 fsw. In: Under-Ocean Technology. Proceedings of the 54th Annual Meeting of the Compressed Gas Association, New York, Jan. 17, 1967, pp. 31-42. Published by the Association (1967c).Google Scholar
  29. Cook, G. A., V. A. Dorr, and B. M. Shields. Region of non-combustion in nitrogen-oxygen and helium-oxygen atmospheres. Ind. Eng. Chem. Processes. Des. Devel.7:308 (1968).CrossRefGoogle Scholar
  30. Craig, A. B., Jr. Underwater swimming and loss of consciousness. J.A.M.A.176:255–258 (Apr. 1961).CrossRefGoogle Scholar
  31. Cromwell, L. Biomedical Instrumentation and Measurements. Englewood Cliffs, N. J., Prentice Hall (1973).Google Scholar
  32. Dalziel, C. F. The effects of electric shock on man. Washington, D. C., U. S. Atomic Energy Commission, Office of Health and Public Safety, Safety and Fire Protection Branch. Reprinted from IRE Trans. Med. Electron. (May 1956).Google Scholar
  33. Dorr, V. A. Fire studies in oxygen-enriched atmospheres. J. Fire Flammability1:91–106 (1970)Google Scholar
  34. Dorr, V. A. Effects of environmental parameters upon combustion of fire resistant materials, potential electrical sources of ignition and analysis of combustion products. Third summary report on combustion safety in diving atmospheres. Contr. N00014-6G-C-0169. Tarrytown, N.Y., Ocean Systems, Inc. (Jan. 31, 1971a).Google Scholar
  35. Dorr, V. A. Compendium of hyperbaric safety research. Final report on combustion safety in diving atmospheres. Contr. N00014-66-C-0169. Tarrytown, N. Y., Ocean Systems, Inc. (Feb. 28, 1971b).Google Scholar
  36. Dorr, V. A., and H. A. Schreiner. Region of non-combustion, flammability limits of hydrogen-oxygen mixtures, full scale combustion and extinguishing tests and screening of flame-resistant materials. Second summary report on combustion safety in diving atmospheres. Contr. N00014-66-C-0149. Tonawanda, N. Y., Ocean Systems, Inc. (May 1, 1969).Google Scholar
  37. Dumitru, A. P., and F. G. Hamilton. Underwater blackout—a mechanism of drowning. GP29:123–125 (Apr. 1963).Google Scholar
  38. Edel, P. O., J. J. Carroll, R. W. Honaker, and E. L. Beckman. Interval at sea-level pressure required to prevent decompression sickness in humans who fly in commercial aircraft after diving. Aerosp. Med.10:1105–1110 (Oct. 1969).Google Scholar
  39. Eggleston, L. A. Evaluation of fire extinguishing systems for use in oxygen rich atmospheres. San Antonio, Texas, Southwest Research Institute, Final Rep. on SwRI Prj. 03-2094 (1967).Google Scholar
  40. Elliott, D. H. Submarine escape from one hundred fathoms. Proc. Roy. Soc. Med.60:617–620 (July 1967).Google Scholar
  41. Elliott, D. H. Submarine escape from 600 feet using rapid compression and buoyant ascent. In: 1971 Offshore Technology Conference, April 19–21, Houston, Texas. Preprints, Vol. II, pp. 191–194. Published by the Conference (1971).Google Scholar
  42. Farthmann, E. H., and A. I. G. Davidson. Fresh water drowning at lowered body temperature. An experimental study. Amer. J. Surg.109:410–415 (Apr. 1965).CrossRefGoogle Scholar
  43. Finkelstein, S., and E. M. Roth. Electric current. In: Compendiums of Human Responses to the Aerospace Environment, Vol. 1, Sect. 1–6. NASA CR CA-1205(1). Albuquerque, New Mex., The Lovelace Foundation for Medical Education and Research (Nov. 1968).Google Scholar
  44. Fisher, R. S. Immersion injury and drowning. In: Harrison, J. R., ed. Principals of Internal Medicine, pp. 721–723. New York, McGraw-Hill (1970).Google Scholar
  45. Frye, J. Electric shock. Electron. World1965 (Dec): 50-51.Google Scholar
  46. Fuller, R. H. Drowning and the postimmersion syndrome, a clinicopathologic study. Mil. Med.128:22–36 (Jan. 1963).Google Scholar
  47. Furry, D. E., E. Reeves, and E. Beckman. Relationship of scuba diving to the development of aviators’ decompression sickness. Aerosp. Med.38:825–828 (Aug. 1967). (Also appeared as NMRI Res. Rep. 5 on MF 011.99-1001, 1966.)Google Scholar
  48. Gates, R. Roentgen findings in immersion blast injury. U. S. Nav. Med. Bull.41(1):12–19 (Jan. 1943)Google Scholar
  49. Greene, D. G. Drowning. In: Fenn, W. O., and H. Rahn, eds. Handbook of Physiology. Section 3: Respiration. Vol. II, pp. 1195–1204. Washington, D. C., American Physiological Society (1965).Google Scholar
  50. Hackman, D. J., and J. S. Glasgow. Underwater electric shock hazards. J. Ocean Technol.2(3): 49–56 (1968).Google Scholar
  51. Halstead, B. Poisonous and Venomous Marine Animals. Vols. I, II, and III. Washington, D. C., U. S. Government Printing Office (1965).Google Scholar
  52. Hamilton, R. W., Jr. Life support for underwater pipeline welding. In: Marine Technology 1970, Vol. I, pp. 159–166. Washington, D. C., Marine Technology Society (1970).Google Scholar
  53. Hamilton, R. W., Jr., and H. R. Schreiner. Putting and keeping man in the sea. Chem. Eng.75:263–270 (June 1968).Google Scholar
  54. Hamilton, R. W., Jr., T. D. Langley, and V. A. Dorr. Safe instrumentation for physiological research in the hyperbaric environment. Trans. N. Y. Acad. Sci.32:458–470 (Apr. 1970).Google Scholar
  55. Hamlin, H. Neurological observations on immersion blast injuries. U. S. Nav. Med. Bull.41(1): 26–31 (Jan. 1943).Google Scholar
  56. Harter, J. V. A review of the Navy safety program. In: Proceedings of Fire Hazards and Extinguishment Conference, pp. 128-138. Brooks AFB, Texas, Air Force Syst. Command, Rep. AMD-TR-67-2 (May 23, 1967a).Google Scholar
  57. Harter, J. V. Fire at high pressure. In: Lambertsen, C. J., ed. Underwater Physiology, Proceedings of the Third Symposium on Underwater Physiology, pp. 55–80. Baltimore, Williams and Wilkins (1967b).Google Scholar
  58. Hoff, E. B. C., and L. J. Greenbaum. A Bibliographical Sourcebook of Compressed Air, Diving and Submarine Medicine, Vol. 1. Washington, D. C., Department of the Navy (1943).Google Scholar
  59. Hoff, E. B. C., and L. J. Greenbaum. A Bibliographical Sourcebook of Compressed Air, Diving and Submarine Medicine, Vol. II. Washington, D. C., Department of the Navy (1954).Google Scholar
  60. House, D. G., P. Prenderville, B. D. Wilson, S. A. W. Wilson, and A. H. Bebb. Protection against underwater blast. Comparison of steel and fibre glass. U. K., Med. Red. Counc., Roy. Nav. Pers. Res. Comm., Rep. RNP 55/846, UWB 42 (Sept. 1955).Google Scholar
  61. Huggett, C., G. von Elbe, and W. Haggerty. The combustibility of materials in oxygen-helium and oxygen-nitrogen atmospheres. Brooks AFB, Texas, USAF Sch. Aerosp. Med., Rep. SAM-TR-66-85 (1966).Google Scholar
  62. Hunley, W. H. Deep ocean work systems. In: Brahtz, J. F., ed. Ocean Engineering. Goals, Environment, Technology, pp. 493–552, New York, Wiley (1968).Google Scholar
  63. Jenkins, W. T. A summary of diving techniques used in polar regions. U. S. Nav. Coastal Syst. Lab., Prelim. Rep. on ONR Res. Proj. RF-51-523-101 (July 1973).Google Scholar
  64. Jones, R. A. Emergency ascent. A deep submersible’s last hope for return. Nav. Eng. J.81:23–27 (Dec. 1969).CrossRefGoogle Scholar
  65. Keatinge, W. R. Immersion hypothermia. Trans. Soc. Occup. Med.18:73–74 (Apr. 1968).CrossRefGoogle Scholar
  66. Langley, T. D. Personal communication (March 1969).Google Scholar
  67. Lavernhe, J. Plongee sous-marine et voyage aerien. Presse Med.78(32):1449 (June 27, 1970).Google Scholar
  68. Manuel, J. F. Submerged dry transfer from a diver lock-out submarine. In: Progress into the Sea. Transactions of the Symposium, 20–22 Oct. 1969, Washington, D. C., pp. 197–199. Washington, D. C., Marine Technology Society (1970).Google Scholar
  69. Mcmullin, J. J. A. Foreword to symposium on immersion blast injuries. U. S. Nav. Med. Bull.41:1–2 Jan. (1943).Google Scholar
  70. Medical Research Council. Protection of divers against underwater explosions. U. K., Roy. Nav. Pers. Res. Comm., Rep. RNP 47/374, UWB 1 (Nov. 1945).Google Scholar
  71. Merck, Sharp and Dome Research Laboratories. The Merck Manual of Diagnosis and Therapy. Tenth edition. Rahway, N. J., Merck, Sharp and Dome Research Laboratories (1961).Google Scholar
  72. Miles, S. Underwater Medicine. Third edition. Philadelphia, J. B. Lippincott (1969).Google Scholar
  73. Miner, A. D. Scuba hazards to air crew. Business pilots safety bulletin 61–204. New York, Flight Safety Foundation (1961).Google Scholar
  74. Myrick J. A. A rescue system for medical diving emergencies. In 1972 Offshore Techlogy Conference May 1–3 Houston Texas. PreprintsI pp. 557–561. Published by the Conference 1972.Google Scholar
  75. NASA (National Aeronautics and Space Administration). Report of Apollo 204 Review Board to the Administrator. Washington, D. C., National Aeronautics and Space Administration (1967).Google Scholar
  76. NFPA (National Fire Protection Association). Manual on Fire Hazards in Oxygen-Enriched Atmospheres. NFPA 53-M, 1969 edition. Boston, Mass., National Fire Protection Association (1969).Google Scholar
  77. Oser, H. Medizinische Erfahrungen beim Einsatz des Unterwasserlaboratoriums ‘Helgoland’ in Herbst 1971. DFVLR-Nachrichten, pp. 307-308 (Aug. 1972).Google Scholar
  78. Princevalle, R. Deep diving system MK-2. In: Progress into the Sea. Transactions of the Symposium, 20–22 Oct. 1969. Washington, D. C. pp. 57–70. Washington, D. C., Marine Technology Society (1970).Google Scholar
  79. Roth, E. M. Space cabin atmospheres. Part II—Fire and blast hazards. Washington, D. C., National Aeronautics and Space Administration (1964) (NASA SP-48).Google Scholar
  80. Sawyer, R. N. Some aspects of scuba in college health. J. Amer. Coll. Health Ass.20:323–327 (June 1972).Google Scholar
  81. Sciarli, R., F. Sicardi, C. Lemaire, and D. Prosperi. Mycobacteriologie et plongee a saturation. Bull. Medsubhyp9:15–21 (Mar. 1973).Google Scholar
  82. Smoot, A., and C. A. Bentel. Development of a shock hazard test procedure for underwater swimming pool lighting fixtures. Melville, L. I., N. Y. Underwriters’ Elec. Dep. Bull. Res. 60 (Nov. 1971).Google Scholar
  83. Somers, L. H. Research diver’s manual. Ann Arbor, Mich., Univ. Mich., Sea Grant Tech. Rep. 16, MICHU-SG-71-212 (Aug. 1972).Google Scholar
  84. Swan, A. G. Two man space environment simulator accident. In: Proceedings of Fire Hazards and Extinguishment Conference, pp. 120-127. Brooks AFB, Texas, Air Force Syst. Command, Rep. AMD-TR-67-2 (May 23, 1967).Google Scholar
  85. Taylor, J. D. The otolaryngologic aspects of skin and scuba diving. Laryngoscope69:809–858 (July 1959).CrossRefGoogle Scholar
  86. Thomas, A. A. Pathology report on the toxicity of the pyrolysis products of Freon 1301. In: Proceedings of Fire Hazards and Extinguishment Conference, pp. 118-119. Brooks AFB, Texas, Air Force Syst. Command, Rep. AMD-TR-63-2 (May 23, 1967).Google Scholar
  87. U. S. Navy. U. S. Navy Diving Manual. Washington, D. C., U. S. Navy Department (Mar. 1970) (NAVSHIPS 0994-001-9010).Google Scholar
  88. Vernot, E. H. Inhalation toxicity and chemistry of pyrolysis products of bromotrifluoromethane. In: Proceedings of Fire Hazards and Extinguishment Conference, pp. 107-117, Brooks AFB, Texas, Air Force Syst. Command, Rep. AMD-TR-67-2 (May 23, 1967).Google Scholar
  89. Wakeley, C. P. G. Effect of underwater explosions on the human body. Lancet (1):715–718 (June 9, 1945).CrossRefGoogle Scholar
  90. Webster, D. P. Skin and scuba diving fatalities in the U. S. In: U. S. Public Health Rep. 81, pp. 703-711 (Aug. 1966).Google Scholar
  91. Wolf, N. M. Underwater blast injury. A review of the literature. U. S. Nav. Submar. Med. Cent., Rep. SMRL 646 (Oct. 26, 1970).Google Scholar
  92. Zuckerman, S. Problems of blast injuries. Brit. Med. J.1:94 (1941).Google Scholar

Copyright information

© Plenum Press, New York 1976

Authors and Affiliations

  • Charles W. Shilling
    • 1
  • Margaret F. Werts
    • 1
  • Nancy R. Schandelmeier
    • 1
  1. 1.Science Communication Division, Department of Medical and Public Affairs The Medical CenterThe George Washington UniversityUSA

Personalised recommendations