Advertisement

Decompression Sickness

  • Charles W. Shilling
  • Margaret F. Werts
  • Nancy R. Schandelmeier

Abstract

Man first began to spend substantial amounts of time under increased pressure soon after the development of the air compressor, early in the nineteenth century. The majority of such exposures occurred in European tunneling and caisson work. The process of decompressing took some time because of the cumbersome air locks and the general need to climb many steps back to the surface. During and after these decompressions men were noted to exhibit symptoms of distress but this was generally attributed to the unhealthy gas environment that resulted from poor ventilation, candle-burning, and tunneling under marshes where trapped sulfurous gases were often found.

Keywords

Ascent Rate Decompression Procedure Bottom Time Saturation Depth Decompression Time 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Barnard, E. E. P. The treatment of decompression sickness developing at extreme pressures. In: Lambertsen, C. J., ed. Underwater Physiology. Proceedings of the Third Symposium on Underwater Physiology, pp. 156–164. Baltimore, Williams and Wilkins (1967).Google Scholar
  2. Beckman, E. L., and E. M. Smith. TEKTITE II. Medical supervision of the Scientists-in-the-Sea. Texas Rep. Biol. Med.30:1–204 (Fall 1972).Google Scholar
  3. Behnke, A. R. Investigations concerned with problems of high altitude flying and deep diving— applications of certain findings pertaining to physical fitness to the general military service. Milit. Surg.90:9–28 (Jan. 1942).Google Scholar
  4. Behnke, A. R. Some early studies on decompression. In: Bennett, P. B., and D. H. Elliott, eds. The Physiology and Medicine of Diving and Compressed Air Work, pp. 226-251. Baltimore, Williams and Wilkins (1969).Google Scholar
  5. Behnke, A. R. Medical aspects of pressurized tunnel operations. J. Occup. Med.12:101–112 (Apr. 1970).Google Scholar
  6. Boycott, A. E., G. C. C. Damant, and J. S. Haldane. The prevention of compressed air illness. J. Hyg. (London) 8:342–443 (1908).CrossRefGoogle Scholar
  7. Buckles, R. G., and C. Knox. In vivo bubble detection by acoustic-optical imaging techniques. Nature222:771–772 (May 24, 1969).CrossRefGoogle Scholar
  8. Bühlmann, A. A. The use of multiple inert gas mixtures in decompression. In: Bennett, P. B., and D. H. Elliott, eds. The Physiology and Medicine of Diving and Compressed Air Work, pp. 357–385. Baltimore, Williams and Wilkins (1969).Google Scholar
  9. Decompression Sickness Panel, Medical Research Council. A medical code of practice for work in compressed air. London, England, Construction Industry Research and Information Association (Feb. 1973) (Rep. CIRIA 44).Google Scholar
  10. Des Granges, M. Standard air decompression table. U. S. Navy Exp. Diving Unit, Rep. 5-57 (Dec. 3, 1956).Google Scholar
  11. Douglas, E. Solubilities of oxygen, argon, and nitrogen in distilled water. J. Phys. Chem.68:169–180 (Jan. 1964).CrossRefGoogle Scholar
  12. Duffner, G. J. Decompression sickness and its prevention among compressed air workers. City of Seattle, Washington (Dec. 20, 1962).Google Scholar
  13. Duffner, G. J., J. F. Snyder, and L. L. Smith. Adaptation of helium-oxygen to mixed-gas scuba. U. S. Navy Exp. Diving Unit, Rep. 3-59 (1959).Google Scholar
  14. Galloway, W. J. An experimental study of acoustically induced cavitation in liquids. J. Acoust. Soc. Amer.26:849–857 (Sept. 1954).CrossRefGoogle Scholar
  15. Hamilton, R. W., Jr., D. J. Kenyon, M. Freitag, and H. R. Schreiner. NOAA OPS I and II: Formulation of excursion procedures for shallow undersea habitats. Tarrytown, N. Y., Union Carbide Tech. Cent., Environ. Physiol. Lab., Rep. UCRI 731 (July 31, 1973).Google Scholar
  16. Harvey, E. N. Physical factors in bubble formation. In: Fulton, J. F., ed. Decompression Sickness, pp. 90–114. Philadelphia, W. B. Saunders and Co. (1951).Google Scholar
  17. Hawkins, J. A., C. W. Shilling, and R. A. Hansen. A suggested change in calculating decompression tables for diving. U. S. Nav. Med. Bull.33:327–338 (July 1935).Google Scholar
  18. Hempleman, H. V. Decompression procedures for deep, open sea operations. In: Lambertsen, C. J., ed. Underwater Physiology. Proceedings of the Third Symposium on Underwater Physiology, pp. 255–266. Baltimore, Williams and Wilkins (1967).Google Scholar
  19. Hempleman, H. V. British decompression theory and practice. In: Bennett, P. B., and D. H. Elliott, eds. The Physiology and Medicine of Diving and Compressed Air Work, pp. 291–318. Baltimore, Williams and Wilkins (1969).Google Scholar
  20. Jones, H. B. Gas exchange and blood-tissue perfusion factors in various body tissues. In: Fulton, J. F., ed. Decompression Sickness, pp. 278–321. Philadelphia, W. B. Saunders Co. (1951).Google Scholar
  21. Kidd, D. H., and D. H. Elliott. Clinical manifestations and treatment of decompression sickness in divers. In: Bennett, P. B., and D. H. Elliott, eds. The Physiology and Medicine of Diving and Compressed Air Work, pp. 464–490. Baltimore, Williams and Wilkins Co. (1969).Google Scholar
  22. Martin, F. E., J. E. Hudgens, and J. W. Wonn. Manned hyperbaric demonstration of incipient bubble detection using nonlinear ultrasonic propagation. Annapolis, Md., Westinghouse Electric Corp., Ocean Res. Eng. Cent., Rep. OER-73-16 (May 31, 1973).Google Scholar
  23. Molumphy, G. G. He-O2 decompression tables. U. S. Navy Exp. Diving Unit, Rep. 8-50 (Sept. 26, 1950).Google Scholar
  24. Morrison, J. J. The salting-out of non-electrolytes. Part I. The effect of ionic size, ionic charge, and temperature. J. Chem. Soc. (London) (Pt. III):3814-3818 (Oct. 1952).Google Scholar
  25. Rashbass, C. Investigation into the decompression tables. Alverstoke, England, Roy. Nav. Physiol. Lab., Med. Res. Counc, Roy. Nav. Pers. Res. Comm., Rep. UPS 151 (Oct. 1955).Google Scholar
  26. Rubissow, G. J., and R. S. Mackay. Ultrasonic imaging of in vivo bubbles in decompression sickness. Ultrasonics9:225–234 (Oct. 1971).CrossRefGoogle Scholar
  27. Sayers, R. R., W. P. Yant, and J. H. Hildebrand. Possibilities in the use of helium-oxygen mixtures as a mitigation of caisson disease. U. S. Dept. Interior, Bur. Mines, Rep. 2670 (Feb. 1925).Google Scholar
  28. Schibli, R. A., and A. A. Bühlmann. The influence of physical work upon decompression time after simulated oxygen-helium dives. Helv. Med. Acta36:327–342 (Oct. 1972).Google Scholar
  29. Schreiner, H. R., and P. L. Kelly. Computation methods for decompression from deep dives. In: Lambertsen, C. J., ed. Underwater Physiology. Proceedings of the Third Symposium on Underwater Physiology, pp. 275–299. Baltimore, Williams and Wilkins (1967).Google Scholar
  30. Spencer, M. P., S. D. Campbell, J. L. Sealey, F. C. Henry, and J. Lindbergh. Experiments on decompression bubbles in the circulation using ultrasonic and electromagnetic flowmeters. J. Occup. Med.11:238–244 (May 1969).Google Scholar
  31. U. S. Navy. U. S. Navy Diving Manual. Washington, D. C., U. S. Navy Department (Mar. 1970) (NAVSHIPS 0994-001-9010).Google Scholar
  32. U. S. Navy Supervisor Of Diving. Handbook: U. S. Navy Diving Operations. Washington, D. C., U. S. Navy Department, Naval Ships Systems Command (1971) (NAVSHIPS 0994-009-6010).Google Scholar
  33. U. S. Navy Supervisor Of Diving. U. S. Navy Recompression Chamber Operators Handbook. Washington, D. C., U. S. Navy Department, Naval Ship’s System Command (1973) (NAVSHIPS 0994-014-5010).Google Scholar
  34. Van Der Aue, O. E., R. J. Kellar, E. S. Brinton, G. Darron, H. D. Gilliam, and R. J. Jones. Calculation and testing of decompression tables for air dives employing the procedure of surface decompression and the use of oxygen. U. S. Navy Exp. Diving Unit, Unit Rep. 1 on Proj. NM002007 (Nov. 1951).Google Scholar
  35. Webster, E. Cavitation. Ultrasonics1:39–48 (Jan./Mar. 1963).CrossRefGoogle Scholar
  36. Weiss, R. F. The solubility of nitrogen, oxygen and argon in water and seawater. Deep Sea Res.17:721–735 (1970).Google Scholar
  37. Wisconsin State Department Of Industry, Labor And Human Relations. Work under compressed air, Appendix A. In: Wisconsin Administrative Code of Rules of the Department of Industry, Labor and Human Relations. Madison, Wisconsin (Aug. 1971). (No. 188).Google Scholar
  38. Workman, R. D. Calculation of decompression schedules for nitrogen-oxygen and heliumoxygen dives. U. S. Navy Exp. Diving Unit, Rep. 6-65 (May 26, 1965).Google Scholar
  39. Workman, R. D., and J. L. Reynolds. Adaptation of helium-oxygen to mixed gas scuba. U. S. Navy Exp. Diving Unit, Rep. 1-65 (Mar. 1, 1965).Google Scholar

Copyright information

© Plenum Press, New York 1976

Authors and Affiliations

  • Charles W. Shilling
    • 1
  • Margaret F. Werts
    • 1
  • Nancy R. Schandelmeier
    • 1
  1. 1.Science Communication Division, Department of Medical and Public Affairs The Medical CenterThe George Washington UniversityUSA

Personalised recommendations