Advertisement

Man in the Ocean Environment: Physiological Factors

  • Charles W. Shilling
  • Margaret F. Werts
  • Nancy R. Schandelmeier

Abstract

Even though breathing under increased ambient pressure is a recent development in man’s history, there is now ample reason and need to put man at the greatest possible depth consistent with his ability to do useful work. Respiratory variables are of crucial importance in determining both the capacity and the safety of working at depth and under high pressure.

Keywords

Ocean Environment Deep Body Temperature Expiratory Reserve Volume Simulated Dive Pulmonary Oxygen Toxicity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ackles, K. N., and B. Fowler. Cortical evoked response and inert gas narcosis in man. Aerosp. Med.43:1181–1184 (Nov. 1971).Google Scholar
  2. Adolfson, J. Human performance and behavior in hyperbaric environments. Acta Psychol. Gothoburgensia6:1–74 (1967).Google Scholar
  3. Agostoni, E., G. Gurtner, G. Torri, and H. Rahn. Respiratory mechanics during submersion and negative pressure breathing. J. Appl. Physiol.21:251–258 (Jan. 1966).Google Scholar
  4. Albano, G. Influenza della velocita di discesa sulla latenza dei disturbi neuropsichici da compressa nel lavoro subacqueo. Presented at the 25th National Congress of Medicine, Taormina, Italy (October 1962).Google Scholar
  5. Albano, G. Principles and observations on the physiology of the scuba diver. (Translation). Off. Nav. Res. Rep. ONR-DR-150 (1970).Google Scholar
  6. Albano, G., and P. M. Criscuoli. La sindrome neuropsichia di profondita. Note 4. Boll. Soc. Ital. Biol. Sper.38:754 (Aug. 15, 1962).Google Scholar
  7. Albano, G., and P. M. Criscuoli. Neuropsychological effects of exposure to compressed air. In: Lambertsen, C. J., ed. Underwater Physiology: Proceedings of the Fourth Symposium on Underwater Physiology, pp. 193–204. New York, Academic Press (1971).Google Scholar
  8. Alexander, L. Treatment of shock from prolonged exposure to cold especially in water. Combined Intelligence Objectives Sub-committee, Item No. 24, File No. 26-37 (1946).Google Scholar
  9. Andersen, H. T. Physiological adaptation in diving vertebrates. Physiol. Rev.46:212–243 (Apr. 1966).Google Scholar
  10. Anderson, B. Ocular effects of changes in oxygen and carbon dioxide tension. Trans. Amer. Ophthalmol. Soc.66:423–474 (1968).Google Scholar
  11. Anthonisen, N. R., M. E. Bradley, J. Vorosmarti, and P. G. Linaweaver. Mechanics of breathing with helium-oxygen and neon-oxygen mixtures in deep saturation diving. In: Lambertsen, C. J., ed. Underwater Physiology. Proceedings of the Fourth Symposium on Underwater Physiology, pp. 339–345. New York, Academic Press (1971).Google Scholar
  12. Arborelius, M., Jr., U. I. Balldin, B. Lilja, and C. E. G. Lundgren. Hemodynamic changes in man during immersion with the head above water. Aerosp. Med.43:592–598 (June 1972).Google Scholar
  13. Arnett, E. L., and D. T. Watts. Catecholamine excretion in man exposed to cold. J. Appl. Physiol.15:499–500 (May 1960).Google Scholar
  14. Bachrach, A. J., and P. B. Bennett. Tremor in diving. Aerosp. Med.44:613–623 (June 1973).Google Scholar
  15. Bachrach, A. J., D. R. Thorne, and K. J. Conda. Measurements of tremor in the Makai Range 520 foot saturation dive. Aerosp. Med.42:856–860 (Aug. 1971).Google Scholar
  16. Balldin, U., and C. Lundgren. Nitrogen elimination in man during immersion, shifts in temperature and body position. In: Abstracts of the Twenty-Fifth Congress of Physiological Sciences Satellite Symposium: Recent Progress in Fundamental Physiology of Diving. Marseille, France (July 1971), pp. 59-60 (unpublished).Google Scholar
  17. Bangham, A. D., M. M. Standish, and K. Miller. Cation permeability of phospho-lipid model membranes: effect of narcosis. Nature208:1295 (Dec. 25, 1965).CrossRefGoogle Scholar
  18. Barnard, E. E. P., H. V. Hempleman, and C. Trotter. Mixture breathing and nitrogen narcosis. Alverstoke, U. K., Roy. Nav. Personnel Res. Comm., Med. Counc. Rep. (1962).Google Scholar
  19. Bartlett, R. G., Jr. Respiratory system. In: Parker, J. F., and V. R. West, eds. Bioastronautics Data Book, pp. 489-531. Washington, D. C., National Aeronautics and Space Administration (1973) (NASA SP-3006).Google Scholar
  20. Battelle Columbus Laboratories, U. S. Navy Diving-Gas Manual. Second edition. Washington, D. C., U. S. Navy Supervisor of Diving (1971) (NAVSHIPS 0994-003-7010).Google Scholar
  21. Bean, J. W. Tris buffer, carbon dioxide and sympatho-adrenal system in reactions to oxygen at high pressure. Amer. J. Physiol.201:737–739 (Oct. 1961).Google Scholar
  22. Bean, J. W., and D. Zee. Metabolism and the protection by anesthesia against toxicity of oxygen at high pressure. J. Appl. Physiol.20:525–530 (1965).Google Scholar
  23. Beckman, E. L. Thermal protection during immersion in cold water. In: Proceedings of the Second Symposium on Underwater Physiology, pp. 246–266. Washington, D. C., National Academy of Sciences-National Research Council (1963).Google Scholar
  24. Beckman, E. L. Thermal protective suits for underwater swimmers. Milit. Med.132:195–209 (Mar. 1967).Google Scholar
  25. Beckman, E. L., and E. M. Smith. Tektite II: Medical supervision of scientists in the sea. Texas Rep. Biol. Med.30:1–204 (Fall 1972).Google Scholar
  26. Beckman, E. L., E. Reeves, and L. W. Raymond. Unpublished observations (1966).Google Scholar
  27. Behnke, A. R. Employment of helium in diving to new depths of 440 feet. U. S. Nav. Med. Bull.40:65–67 (Jan. 1942).Google Scholar
  28. Behnke, A. R. Oxygen decompression. In: Goff, L. G., ed. Proceedings of the Underwater Physiology Symposium, pp. 61-73. Washington, D. C., National Academy of Science, National Research Council (1955), Publ. 377.Google Scholar
  29. Behnke, A. R. The Harry G. Armstrong lecture. Decompression sickness: advances and interpretations. Aerosp. Med.42:255–267 (Mar. 1971).Google Scholar
  30. Behnke, A. R., and T. L. Willmon. Cutaneous diffusion of helium in relation to peripheral blood flow and the absorption of atmospheric nitrogen through the skin. Amer. J. Physiol.131:627–632 (Jan. 1941).Google Scholar
  31. Behnke, A. R., and C. P. Yaglou. Physiological responses of men to chilling in ice water and to slow and fast rewarming. J. Appl. Physiol.3:591–602 (Apr. 1951).Google Scholar
  32. Behnke, A. R., and O. D. Yarbrough. Physiologic studies of helium. U. S. Nav. Med. Bull.36:542–558 (Oct. 1938).Google Scholar
  33. Behnke, A. R., and O. D. Yarbrough. Respiratory resistance, oil water solubility and mental effects of argon compared with helium and nitrogen. Amer. J. Physiol.126:409–415 (June 1939).Google Scholar
  34. Behnke, A. R., R. M. Thompson, and E. P. Motley. The psychologic effects from breathing air at 4 atmospheres pressure. Amer. J. Physiol112:554–558 (July 1935).Google Scholar
  35. Bennett, P. B. Flicker fusion frequency and nitrogen narcosis. A comparison with EEG changes and the narcotic effect of argon mixtures. Alverstoke, U. K., Roy. Nav. Personnel Res. Comm., Med. Res. Counc., Underwater Physiol. Sub-comm. Rep. 176 (1958).Google Scholar
  36. Bennett, P. B. Psychometric impairment in men breathing oxygen-helium at increased pressures. Alverstoke, U. K., Roy. Nav. Personnel Res. Comm., Rep. 251 (1965).Google Scholar
  37. Bennett, P. B. The Aetiology of Compressed Air Intoxication and Inert Gas Narcosis. New York, Pergamon Press (1966).Google Scholar
  38. Bennett, P. B. Performance impairment in deep diving due to nitrogen, helium, neon and oxygen. In: Lambertsen, C. J., ed. Underwater Physiology, Proceedings of the Third Symposium on Underwater Physiology, pp. 327–340. Baltimore, Williams and Wilkins (1967).Google Scholar
  39. Bennett, P. B. Inert gas narcosis. In: Bennett, P. B., and D. H. Elliott, eds. The Physiology and Medicine of Diving and Compressed Air Work, pp. 155–182. Baltimore, Williams and Wilkins (1969).Google Scholar
  40. Bennett, P. B. Pressure physiology. Interim report on some physiological studies during 1500-foot simulated dive. Alverstoke, U. K., Roy. Nav. Physiol. Lab., Rep. 1/70 (1970).Google Scholar
  41. Bennett, P. B. Simulated oxygen-helium saturation diving to 1500 ft and the helium barrier. In: 1971 Offshore Technology Conference, April 19–21, Houston, Texas. Preprints, vol. II, pp. 195–210. Published by the Conference (1971).Google Scholar
  42. Bennett, P. B. Review of protective pharmacological agents in diving. Aerosp. Med.43:184–192 (Feb. 1972a).Google Scholar
  43. Bennett, P. B. Some physiological measurements during human saturation diving to 1,500 ft. In: Fructus, X., ed. Third International Conference on Hyperbaric and Underwater Physiology, pp. 35-43. Paris, Doin (1972b).Google Scholar
  44. Bennett, P. B., and A. Glass. Electroencephalographic and other changes induced by high partial pressures of nitrogen. Electroencephalogr. Clin. Neurophysiol.13:91–98 (1961).CrossRefGoogle Scholar
  45. Bennett, P. B., and E. J. Towse. The high pressure nervous syndrome during a simulated oxygen-helium dive to 1500 ft. Electroenceph. Clin. Neurophysiol.31:383–393 (1971).CrossRefGoogle Scholar
  46. Bennett, P. B., D. Papahadjopoulos, and A. D. Bangham. The effect of raised pressure of inert gas on phospholipid membranes. Life Sci.6:2527–2533 (Dec. 1, 1967).CrossRefGoogle Scholar
  47. Bennett, P. B., K. N. Ackles, and V. J. Cripps. Effects of hyperbaric nitrogen and oxygen on auditory evoked responses in man. Aerosp. Med.40:521–525 (May 1969).Google Scholar
  48. Benzinger, T. H., A. W. Pratt, and C. Kitzinger. The thermostatic control of human metabolic heat production. Proc. Nat. Acad. Sci. USA47:730–739 (May 1961).CrossRefGoogle Scholar
  49. Bishop, R. P. OSHA breathing gas purity standards. In: Battelle Columbus Laboratories. Proceedings, 1973 Divers’ Gas Purity Symposium, Nov. 27–28, 1973, pp. V-1-V-10. Washington, D. C., Navy Supervisor of Diving (1973).Google Scholar
  50. Bjürstedt, H., and G. Severin. The prevention of decompression sickness and nitrogen narcosis by the use of hydrogen as a substitute for nitrogen. (The Arne Zetterstrom method of deep sea diving.) Milit. Surg.103:107–116 (Aug. 1948).Google Scholar
  51. Blenkarn, G. D., C. Aquadro, B. A. Hills, and H. A. Saltzman. Urticaria following the sequential breathing of various inert gases at a constant pressure of 7 ATA. A possible manifestation of gas-induced osmosis. Aerosp. Med.42:141–146 (Feb. 1971).Google Scholar
  52. Bligh, J. Temperature Regulation in Mammals and Other Vertebrates. New York, American Elsevier Publishing Co. (1973).Google Scholar
  53. Bowen, H. M. Diver performance and the effects of cold. Hum. Factors10:445–463 (Oct. 1968).Google Scholar
  54. Boyd, E. M. Respiratory Tract Fluid. Springfield, Ill., Charles C Thomas (1972).Google Scholar
  55. Bradley, M. E. The interaction of stresses in diving and adaptation to these stresses. In: Scripps Institute of Oceanography. Human Performance and Scuba Diving. Proceedings of the Symposium on Underwater Physiology, La Jolla, Calif, April 10–11, 1970, pp. 63-69. Chicago, Ill., The Athletic Institute (1970).Google Scholar
  56. Bradley, M. E., and J. Vorosmarti. The nature of hyperbaric arthralgia during dives from 100 to 1000 feet. Presented at the 1972 annual meeting of the Aerospace Medical Association, Bal Harbor, Fla., 8–11 May 1972.Google Scholar
  57. Bradley, M. E., N. R. Anthonisen, J. Vorosmarti, and P. G. Linaweaver. Respiratory and cardiac responses to exercise in subjects breathing helium-oxygen mixtures at pressures from sea level to 19.2 atmospheres. In: Lambertsen, C. J., ed. Underwater Physiology. Proceedings of the Fourth Symposium on Underwater Physiology, pp. 325–345. New York, Academic Press (1971).Google Scholar
  58. Braithwaite, W. R. The calculation of minimum safe inspired gas temperature limits for deep diving. U. S. Navy Exp. Diving Unit, Rep. NEDU 12-72 (July 1972).Google Scholar
  59. Brauer, R. W. Narrative account of a series of pressure chamber dives reaching to 1190 ft. in search of special physiological effects attributable to depths in excess of 1000 feet, Series Physalie, Wrightsville, Marine Biomedical Laboratory and Compagnie Maritime d’Expertises, Marseilles, France, May/June 1968. Wilmington, North Carolina, Wrightsville Marine Biomedical Laboratory (24 July 1968).Google Scholar
  60. Brauer, R. W. Current studies on physiology of extremely deep diving. Mar. Technol. Soc. J.5:31–32 (Nov./Dec. 1971).Google Scholar
  61. Brauer, R. W. Studies concerning the high pressure hyperexcitability in the squirrel monkey. Wilmington, N. C., Wrightsville Marine Biomedical Lab., Final report on ONR contract N00014-69-C-0341 (July 13, 1972a).Google Scholar
  62. Brauer, R. W. Probing deep for keys to convulsive disorders. Biomed. News (July 1972).Google Scholar
  63. Brauer, R. W., and R. O. Way. Relative narcotic potencies of hydrogen, helium, nitrogen, and their mixtures. J. Appl. Physiol. 23-31 (July 1970).Google Scholar
  64. Brauer, R. W., S. Dimov, X. Fructus, P. Fructus, A. Gosset, and R. Naquet. Syndrome neurologique et electrographique des hautes pressions. Rev. Neurol.121:264–265 (Sept. 1969).Google Scholar
  65. Brauer, R. W., M. R. Jordan, and R. O. Way. The high pressure neurological syndrome in the squirrel monkey, Saimari sciureus. In: Third International Conference on Hyper baric and Underwater Physiology, pp. 23-30. Paris, Doin (1972).Google Scholar
  66. Brauer, R. W., M. R. Jordan, R. W. Beaver, and S. M. Goldman. Interaction of the high pressure neurological syndrome with various pharmacologic agents. In: Proceedings of the Fifth Symposium on Underwater Physiology, Freeport, Bahamas, 21–25 Aug. 1972. In press.Google Scholar
  67. Brick, I. Circulatory responses to immersing the face in water. J. Appl. Physiol.21:33–36 (Jan. 1966).Google Scholar
  68. Brink, F., and J. M. Posternak. Thermodynamic analysis of the relative effectiveness of narcosis. J. Cell. Comp. Physiol.32:211 (Oct. 1948).CrossRefGoogle Scholar
  69. Brown, E. B., Jr., and F. Miller. Ventricular fibrillation following a rapid fall in alveolar carbon dioxide concentration. Amer. J. Physiol.169:56–60 (Apr. 19Google Scholar
  70. Brumlik, J., and C. B. Yap. Normal Tremor. Springfield, Ill., Charles C Thomas (1970).Google Scholar
  71. Budd, G. M., and N. Warhaft. Urinary excretion of adrenal steroids, catecholamines and electrolytes in man, before and after acclimatization to cold in Antarctica. J. Physiol. (London)210:799–806 (Nov. 1970).Google Scholar
  72. Bühlmann, A. A. The use of multiple inert gases in decompression. In: Bennett, P. B., and D. H. Elliott, eds. The Physiology and Medicine of Diving and Compressed Air Work, pp. 357–385. Baltimore, Williams and Wilkins (1969).Google Scholar
  73. Bühlmann, A. A., H. Matthys, G. Overrath, P. B. Bennett, D. H. Elliott, and S. P. Gray. Saturation exposures at 31 ATA in an oxygen-helium atmosphere with excursions to 36 ATA. Aerosp. Med.41:394–402 (Apr. 1970).Google Scholar
  74. Bulenkov, S. Ye., et al. Illnesses peculiar to underwater swimming and adverse effects due to them. Nitrogen narcosis. In: Manual of Scuba Diving, p. 185. Moscow, Publishing House of the Ministry of Defense (1968).Google Scholar
  75. Bullard, R. W., and G. M. Rapp (1970). Problems of body heat loss in water immersion. Aerosp. Med.41:1269–1277 (Nov. 1970).Google Scholar
  76. Burton, R. Helgoland underwater laboratory. Sea Frontiers17:335–341 (Nov./Dec. 1971).Google Scholar
  77. Cabarrou, P. L’ivresse des grandes profondeurs. Presse Med.72:793–797 (Mar. 14, 1964).Google Scholar
  78. Caldwell, P. R. B., W. L. Lee, Jr., H. S. Schildkraut, and E. R. Archibald. Changes in lung volume, diffusing capacity, and blood gases in men breathing oxygen. J. Appl. Physiol.21:1477–1483 (Sept. 1966).Google Scholar
  79. Call, D. W. A study of Halon 1301 (CBrF3) toxicity under simulated flight conditions. Aerosp. Med.44:202–204 (Feb. 1973).Google Scholar
  80. Carlisle, R., E. H. Lanphier, and H. Rahn. Hyperbaric oxygen and persistence of vision in retinal ischemia. J. Appl. Physiol.19:914–918 (Sept. 1964).Google Scholar
  81. Case, E. M., and J. B. S. Haldane. Human physiology under high pressure. J. Hyg.41:225–249 (Nov. 1941).CrossRefGoogle Scholar
  82. Chin, A. K., R. Seaman, and M. Kapileshwarker. Plasma catecholamine response to exercise and cold adaptation. J. Appl. Physiol34:409–412 (Apr. 1973).Google Scholar
  83. Chouteau, J. Respiratory gas exchange in animals during exposure to extreme ambient pressures. In: Lambertsen, C. J., ed. Underwater Physiology. Proceedings of the Fourth Symposium on Underwater Physiology, pp. 385–397. New York, Academic Press (1971).Google Scholar
  84. Chouteau, J., and J. H. Corriol. Physiological aspects of deep sea diving. Endeavour30:70–76 (May 1971).CrossRefGoogle Scholar
  85. Chouteau, J., J. Y. Cousteau, J. Alinat, and C. F. Aquadro. Sur les limites physiologiques d’utilisation de melange oxygen-helium pour la plongee profonde et les sejours prolonges sous pression. C. R. Acad. Sci. (Paris) (D)264:1731–1734 (Mar. 29, 1967).Google Scholar
  86. Chouteau, J., J.-M. Ocana De Sentuary, and L. Pironti. Theoretical, experimental, and comparative study of compression as applied to intervention dives and saturation dives at great depths. Marseilles, Centre d’Etudes Marines Avancees, Rep. CEMA1-71 (Mar. 25, 1971). (Translated by M. E. Hashmall, Biological Sciences Communication Project, The George Washington University Medical Center, Washington, D. C.)Google Scholar
  87. Christie, R. V., and A. L. Loomis. The pressure of aqueous vapor in the alveolar air. J. Physiol. (London)77:35–48 (1933).Google Scholar
  88. Clark, J. M. Tolerance and adaptation to acute and chronic hypercapnia in man. In: Battelle Columbus Laboratories. Proceedings, 1973 Divers’ Gas Purity Symposium, Nov. 27–28, 1973, pp. I-1-I-20. Washington, D. C., U. S. Navy Supervisor of Diving (1973).Google Scholar
  89. Clark, J. M., and C. J. Lambertsen. Pulmonary oxygen tolerance and the rate of development of pulmonary oxygen toxicity in man at 2 atm inspired oxygen tension. In: Lambertsen, C. J., ed. Underwater Physiology. Proceedings of the Third Symposium on Underwater Physiology, pp. 439-451. Baltimore, Williams and Wilkins (1967).Google Scholar
  90. Clark, J. M., and C. J. Lambertsen. Pulmonary oxygen toxicity: a review. Pharmacol. Rev.23:38–133 (June 1971a).Google Scholar
  91. Clark, J. M., and C. J. Lambertsen. Rate of development of oxygen toxicity in man during oxygen breathing at 2 atm. J. Appl. Physiol.30:739–752 (Nov. 1971b).Google Scholar
  92. Clark, J. M., R. D. Sinclair, and B. E. Welch. Rate of acclimitization to chronic hypercapnia in man. In: Lambertsen, C. J., ed. Underwater Physiology. Proceedings of the Fourth Symposium on Underwater Physiology, pp. 399–408. New York, Academic Press (1971).Google Scholar
  93. Clark, L. C., and L. Golden. Survival of mammals breathing organic liquids equilibrated with oxygen at atmospheric pressure. Science153:1755–1756 (June 24, 1966).CrossRefGoogle Scholar
  94. Clements, J. A., and K. M. Wilson. The affinity of narcotic agents for interfacial films. Proc. Nat. Acad. Sci. USA.48:1008–1014 (June 1962).CrossRefGoogle Scholar
  95. COMEX: New world record simulated deep dive (Physalie V experiment). Marseilles, France, Hyperbaric Research Center, COMEX (1970).Google Scholar
  96. COMEX: “Physalie VI” 2001 feet. Marseilles, France, Hyperbaric Research Center, COMEX (1972).Google Scholar
  97. Cook, S. F., F. E. South, Jr., and D. R. Young. Effect of helium on gas exchange of mice. Amer. J. Physiol.164:248–250 (Jan. 1951).Google Scholar
  98. Cooper, R. A., and Scarratt. Evaluation of lock-out submarine Deep Diver for in situ biological work in boreal waters. Helgoland Wiss. Meeresuntersuch24:82–90 (Mar. 1973).CrossRefGoogle Scholar
  99. Corriol, J., and J. J. Rohner. Role de la temperature de l’eau dans la bradycardie d’immersion de la face. Arch. Sci. Physiol.22(2): 265–274 (1968).Google Scholar
  100. Cotes, J. E. Lung Function: Assessment and Application in Medicine. Second edition. Philadelphia, F. A. Davis Co. (1968).Google Scholar
  101. Cousteau, J. Y. The Silent World. London, Reprint Society (1953).Google Scholar
  102. Cousteau, J.-Y. Working for weeks on the sea floor. Nat. Geogr.129:498–537 (Apr. 1966).Google Scholar
  103. Covey, C. W. Unisuit takes the chill out of diving. Undersea Technol.13:39–42 (Sept. 1972).Google Scholar
  104. Craig, A. B., Jr. Effects of submersion and pulmonary mechanics on cardiovascular function in man. In: Rahn, H., and T. Yokoyama, eds. Physiology of Breath-Hold Diving and the Ama of Japan, pp. 295-302. Washington, D. C., National Academy of Sciences-National Research Council (1965), Publ. 1341.Google Scholar
  105. Craig, A. B., Jr., and M. Dvorak. Thermal regulation during water immersion. J. Appl. Physiol.21:1577–1585 (Sept. 1966).Google Scholar
  106. Craig, A. B., Jr., and M. Dvorak. Comparison of exercise in air and in water of different temperatures. Med. Sci. Sports1:124–130 (Sept. 1969).Google Scholar
  107. Craig, A. B., Jr., and D. E. Ware. Effect of immersion in water on vital capacity and residual volume of the lungs. J. Appl. Physiol.23:423–425 (Oct. 1967).Google Scholar
  108. Davies, H. C., and R. E. Davies. Biochemical aspects of oxygen poisoning. In: Fenn, W. O., and H. Rahn, eds. Handbook of Physiology: Section 3, Respiration, Vol. II, pp. 1047–1058. Washington, D. C., American Physiological Society (1965).Google Scholar
  109. Davis, F., M. Charlier, R. Saumarez, and V. Muller. Some physiological responses to the stress of aqualung diving. Aerosp. Med.43:1083–1088 (Oct. 1972).Google Scholar
  110. Dejours, P. Hazards of hypoxia diving. In: Rahn, H., and T. Yokoyama, eds. Physiology of Breath-Hold Diving and the Ama of Japan, pp. 183–193. Washington, D. C., National Academy of Sciences-National Research Council (1965).Google Scholar
  111. Dieter, M. P., P. D. Altland, and B. Highman. Tolerance of unacclimated and cold-acclimated rats to exercise in the cold: serum, red and white muscle enzymes, and histological changes. Can. J. Physiol. Pharmacol.48:723–731 (Oct. 1970).Google Scholar
  112. Donald, K. W. Oxygen poisoning in man. Brit. Med. J.1:667 (May 17, 1947).CrossRefGoogle Scholar
  113. Dorr, V. A., and H. R. Schreiner. Region of non-combustion, flammability limits of hydrogen-oxygen mixtures, full scale combustion and extinguishing tests and screening of flame-resistant materials. Tonawanda, N. Y., Ocean Systems, Inc., (May 1, 1969) (AD 689,545).Google Scholar
  114. Dripps, R. D., and J. H. Comroe, Jr. The respiratory and circulatory response of normal man to inhalation of 7.6 and 10.4 percent CO2 with a comparison of the maximal ventilation produced by severe muscular exercise, inhalation of CO2 and maximal voluntary hyperventilation. Amer. J. Physiol.149:43–51 (Apr. 1947).Google Scholar
  115. Dumitru, A. P., and F. G. Hamilton. A mechanism of drowning. Anesth. Analg. (Cleveland)42:170–176 (Mar./Apr. 1963).Google Scholar
  116. Edel, P. O. Mixing hydrox safely. Oceanol. Int.7:31–33 (Jan. 1972).Google Scholar
  117. Edel, P. O., J. M. Holland, C. L. Fisher, and W. B. Fife. Preliminary studies of hydrogen-oxygen breathing mixtures for deep sea diving. In: The Working Diver 1972. Symposium Proceedings, February 1972, Columbus, Ohio, pp. 257–270. Washington, D. C., Marine Technology Society (1972).Google Scholar
  118. Elcombe, D. D., and J. H. Teeter. Nitrogen narcosis during a 14-day continuous exposure to 5.2% O2 in N2 at pressure equivalent to 100 fsw (4 ata). Aerosp. Med.44(7, Sec. II):864-869 (July 1973).Google Scholar
  119. Elliott, D. H. Man underwater. IV: His limitations as a submersible. Underwater Sci. Technol. J.2:69–73 (June 1970).Google Scholar
  120. Ellsberg, E. Diving gas. Collier’s103:22,26,28 (Apr. 15, 1939).Google Scholar
  121. Elsner, R., and P. F. Scholander. Circulatory adaptations to diving in animals and man. In: Rahn, H., and T. Yokoyama, eds. Physiology of Breath-Hold Diving and the Ama of Japan, pp. 281–294. Washington, D. C., National Academy of Sciences-National Research Council (1965), Publ. 1341.Google Scholar
  122. End, E. The use of new equipment and helium gas in a world record dive. J. Ind. Hyg. Toxicol.20:511–520 (Oct. 1938).Google Scholar
  123. End, E. The physiological effects of increased pressure. In: Proceedings of the Sixth Pacific Science Congress of the Pacific Science Association, pp. 91–97. Berkeley, California, University of California Press (1939).Google Scholar
  124. Epstein, M., and T. Saruta. Effect of water immersion in reninaldosterone and renal sodium handling in normal man. J. Appl. Physiol.31:368–374 (Sept. 1971).Google Scholar
  125. Epstein, S. E., M. Stampfer, G. D. Beiser, R. E. Goldstein, and E. Braunwald. Effects of a reduction in environmental temperature on the circulatory response to exercise in man. New Engl. J. Med.280:7–11 (Jan. 2, 1969).CrossRefGoogle Scholar
  126. Faber, J. J., G. R. Williamson, and N. T. Feldman. Lubrication of joints. J. Appl. Physiol.22:793–799(1967).Google Scholar
  127. Featherstone, R. M., and C. A. Muehlbaecher. The current role of inert gases in the search for anesthesia mechanisms. Pharmacol. Rev.15:97–121 (Mar. 1973).Google Scholar
  128. Fenn, W. O. The physiological effects of hydrostatic pressures. In: Bennett, P. B., and D. H. Elliott, eds. The Physiology and Medicine of Diving and Compressed Air Work, pp. 36–57. Baltimore, Williams and Wilkins (1969).Google Scholar
  129. Ferguson, J. The use of chemical potentials as indices of toxicity. Proc. Roy. Soc. London (B)127:387 (July 4, 1939).CrossRefGoogle Scholar
  130. Fischer, C. L., and S. L. Kimzey. Effects of oxygen on blood formation and destruction. In: Lambertsen, C. J., ed. Underwater Physiology–Proceedings of the Fourth Symposium on Underwater Physiology, pp. 41–47. Academic Press (1971).Google Scholar
  131. Fisher, A. B., R. W. Hyde, R. J. M. Puy, J. M. Clark, and C. J. Lambertsen. Effect of oxygen at 2 atm on the pulmonary mechanics of normal man. J. Appl. Physiol.24:529–536 (Apr. 1968).Google Scholar
  132. Fisher, D. A., and W. D. Odell. Effect of cold on TSH secretion in man. J. Clin. Endocr. Metab.33:859–862 (Nov. 1971).CrossRefGoogle Scholar
  133. Flynn, E. T. Effect of immersion on the exchange of oxygen in the lung. U. S. Navy Exp. Diving Unit, Rep. NEDU 1-71 (Jan. 31, 1971).Google Scholar
  134. Flynn, E. T., T. E. Berghage, and E. F. Coil. Influence of increased ambient pressure and gas density on cardiac rate in man. U. S. Navy Exp. Diving Unit, Rep. NEDU 4-72 (Aug. 1972).Google Scholar
  135. Frankenhaeuser, M. V., V. Graff-Lonnevig, and C. M. Hesser. Effects on phychomotor functions of different nitrogen-oxygen mixtures at increased ambient pressures. Acta Physiol. Scand.59:400–409 (Dec. 1963).CrossRefGoogle Scholar
  136. Frattali, V., and R. Robertson. Nutritional evaluation of humans during an oxygen-helium dive to a simulated depth of 1000 feet. Aerosp. Med.44:14–21 (Jan. 1973).Google Scholar
  137. Fructus, X. Physalie VI: 610 metres. Nouvelle performance mondiale de plongee profonde en caisson realisee a Marseille, au Centre Experimental Hyperbare de la COMEX, du 16-5 au 2-6 1972. Med. Sport46(3):180–182 (1972).Google Scholar
  138. Fructus, X., and C. Agarate. The high pressure nervous syndrome. Med. Sport.24:272–278 (Nov. 1971).Google Scholar
  139. Fructus, X. R., R. W. Brauer, and R. Naquet. Physiological effects observed in the course of simulated deep chamber dives to a maximum of 36.5 atm in helium-oxygen atmospheres. In: Lambertsen, C. J., ed. Underwater Physiology. Proceedings of the Fourth Symposium on Underwater Physiology, pp. 545–550. New York, Academic Press (1971).Google Scholar
  140. Fructus, X., C. Agarate, and F. Sicardi. Postponing the “high pressure nervous syndrome” (HPNS) down to 500 meters and deeper. In: Proceedings of the Fifth Symposium on Underwater Physiology, Freeport, Bahamas, 21–25 August 1972. In press.Google Scholar
  141. Gagge, A. P., J. D. Hardy, and G. M. Rapp. Proposed standard system of symbols for thermal physiology. J. Appl. Physiol.27:439–446 (Sept. 1969).Google Scholar
  142. Gauer, O H., J. P. Henry, H. O. Sieker, and W. E. Wendt. The effect of negative pressure breathing on urine flow. J. Clin. Invest.33:287–296 (Feb. 1954).CrossRefGoogle Scholar
  143. Gerschman, R., D. L. Gilbert, S. W. Nye, P. Dwyer, and W. O. Fenn. Oxygen poisoning and irradiation: a mechanism in common. Science119:623–626 (1954a).CrossRefGoogle Scholar
  144. Gerschman, R., S. W. Nye, D. L. Gilbert, P. Dwyer, and W. O. Fenn. Oxygen poisoning: Protective effect of beta-mercaptoethylamine. Proc. Soc. Exp. Biol. Med.85:75–77 (1954b).Google Scholar
  145. Gerschman, R., D. L. Gilbert, and D. Caccamise. Effect of various substances on survival time of mice exposed to different high oxygen tensions. Am. J. Physiol.192:563–571 (1958).Google Scholar
  146. Gershenovich, Z. S., and A. A. Krichevskaya. The protective role of arginine in oxygen poisoning. Biokhimiya25:790–795 (1960).Google Scholar
  147. Gertsman, J. L., G. R. Gamertsfelder, and A. Goldberger. Breathing mixture and depth as separate effects on helium speech. J. Acoust. Soc. Amer.40:1283A (Nov. 1966).Google Scholar
  148. Cilardi, R. C. Saturation diving gas logistics. In: The Working Diver 1972. Symposium Proceedings, Feb. 1972, Columbus, Ohio, pp. 9-22. Washington, D. C., Marine Technology Society (1972).Google Scholar
  149. Gillen, H. W. Oxygen convulsions in man. In: Brown, I. W., Jr. and B. G. Fox, eds. Proceedings of the Third International Conference on Hyperbaric Medicine, pp. 217-223; Washington, D. C., National Academy of Sciences-National Research Council (1966).Google Scholar
  150. Goldman, R. F., J. R. Breckenridge, E. Reeves, and E. L. Beckman. “Wet” versus “dry” suit approaches to water immersion protective clothing. Aerosp. Med.37:485–487 (May 1966).Google Scholar
  151. Goldstein, J. R., and C. E. Menzel. Hemolysis in mice exposed to varying levels of hyperoxia. Aerosp. Med.40:12–13 (Jan. 1969).Google Scholar
  152. Golstein-Golaire, J., L. Vanhaelst, O. D. Bruno, R. Leclercq, and G. Copinschi. Acute effects of cold on blood levels of growth hormone, cortisol, and thyrotropin in man. J. Appl. Physiol.29:622–626 (Nov. 1970).Google Scholar
  153. Goodman, M. W. The syndrome of decompression sickness in historical perspective. U. S. Nav. Med. Res. Lab., Rep. NMRL368 (June 1962).Google Scholar
  154. Goodman, M. W. Minimal-recompression, oxygen-breathing method for the therapy of decompression sickness. In: Lambertsen, C. J., ed. Underwater Physiology, Proceedings of the Third Symposium on Underwater Physiology, pp. 165–182. Baltimore, Williams and Wilkins (1967).Google Scholar
  155. Goodman, M. W., N. E. Smith, J. W. Colston, and E. L. Rich, III. Hyperbaric respiratory heat loss study. Annapolis, Md., Westinghouse Electric Corp., Ocean Res. Eng. Cent., Final Rep. on contract N000-4-71-0099 (Oct. 31, 1971).Google Scholar
  156. Graves, D. J., J. Idicula, C. J. Lambertsen, and J. A. Quinn. Bubble formation in physical and biological systems. A manifestation of counterdiffusion in composite media. Science179:582–584 (Feb. 9, 1973).CrossRefGoogle Scholar
  157. Guleria, J., J. Talwar, O. Malhotra, and J. Pande. Effect of breathing cold air on pulmonary mechanics in normal man. J. Appl. Physiol.27:320–322 (Sept. 1969).Google Scholar
  158. Hamilton, R. W., Jr. Comparative narcotic effects in performance tests of nitrous oxide and hyperbaric nitrogen. Fed. Proc.32(3, PP.2): 682 (Mar. 1973).Google Scholar
  159. Hamilton, R. W., Jr. Psychomotor performance in normoxic neon and helium at 37 atmospheres. In: Proceedings of the Fifth Symposium on Underwater Physiology, August 1972, Freeport, Bahamas. In press.Google Scholar
  160. Hamilton, R. W., Jr. and E. Erb. Are special purity standards for divers’ breathing gas really needed? In: Battelle Memorial Institute. Purity Standards for Divers’ Breathing Gas. Proceedings of a Symposium, Columbus, Ohio, July 1970, pp. I-1-I-10. Columbus, Ohio, Battelle Memorial Institute, Rep. 6-70 (July 1970).Google Scholar
  161. Hamilton, R. W., Jr. and J. B. Macinnis. Unpublished observations (1965).Google Scholar
  162. Hamilton, R. W., Jr., J. B. Macinnis, A. D. Noble, and H. R. Schreiner. Saturation diving to 650 feet. Tonawanda, N. Y., Ocean Systems, Inc., Tech. Mem. B-411 (1966).Google Scholar
  163. Hamilton, R. W., Jr., D. J. Kenyon, M. Freitag, and H. R. Schreiner. NOAA OPS I and II: Formulation of excursion procedures for shallow undersea habitats. Tarrytown, N.Y., Union Carbide Corp., Rep. UCRI-731 (1973).Google Scholar
  164. Harvey, H. W. The Chemistry and Fertility of Sea Waters, pp. 14–19. London, Cambridge University Press (1966).Google Scholar
  165. Haugaard, N. Effect of high oxygen tensions on enzymes. In: Goff, L. G., ed. Proceedings of the Underwater Physiology Symposium, pp. 8-12; Washington, D. C., National Academy of Science-National Research Council (1955), Publ. 377.Google Scholar
  166. Haugaard, N. The scope of chemical oxygen poisoning. In: Lambertsen, C. J., ed. Underwater Physiology, Proceedings of the Fourth Symposium on Underwater Physiology, pp. 1–7. New York, Academic Press (1971).Google Scholar
  167. Heistad, D. D., and R. C. Wheeler. Simulated diving during hypoxia in man. J. Appl. Physiol.28:652–656 (May 1970).Google Scholar
  168. Hempleman, H. V. Investigation into the diving tables. Report III. Alverstoke, U.K., Roy. Nav. Personnel Res. Comm., Rep. 131 (1952).Google Scholar
  169. Hesser, C. M., and B. Holmgren. Effects of raised barometric pressures on respiration in man. Acta Physiol. Scand.47:28–43 (1959).CrossRefGoogle Scholar
  170. Hill, L., R. H. Davis, R. P. Selby, A. Pridham, and A. E. Malone. Deep diving and ordinary diving. U. K., Report of Committee appointed by the British Admiralty (1933).Google Scholar
  171. Hills, B. A. Thermodynamic decompression: an approach based upon the concept of phase equilibrium in tissue. In: Bennett, P. B., and D. H. Elliott, eds. The Physiology and Medicine of Diving and Compressed Air Work, pp. 319–356. Baltimore, Williams and Wilkins (1969).Google Scholar
  172. Hock, R. J., G. F. Bond, and W. F. Mazzone. Physiological evaluation of Sealab II: Effects of two weeks exposure to an undersea 7-atmosphere helium-oxygen environment. Anaheim, Calif., Nortronic (Dec. 1966).Google Scholar
  173. Hof, D. G., W. H. Cline, Jr., J. D. Dexter, and C. E. Mengel. CNS epinephrine tone, a possible etiology for the threshold in susceptibility to oxygen toxicity seizures. Aerosp. Med.43:1194–1199 (Nov. 1972).Google Scholar
  174. Hoff, E. C. A bibliographic sourcebook of compressed air, diving and submarine medicine. Washington, D. C., Department of the Navy, Bureau of Medicine and Surgery (February 1948) (NAVMED 1191).Google Scholar
  175. Hoke, B., D. L. Jackson, J. M. Alexander, and E. T. Flynn. Respiratory heat loss and pulmonary function during cold gas breathing at high pressure. In: Lambertsen, C. J., ed. Proceedings of the Fifth Symposium on Underwater Physiology, Freeport, Bahamas, August 1972. In press.Google Scholar
  176. Hong, S. K. Comparison of the diving and nondiving women of Korea. Fed. Proc.22:831–833 (May/June 1963).Google Scholar
  177. Hong, S. K. Patterns of adaptation in women divers of Korea (ama). Fed. Proc.32:1614–1622 (May 1973).Google Scholar
  178. Hong, S. K., H. Rahn, D. H. Kang, S. H. Song, and B. S. Kang. Diving pattern, lung volumes, and alveolar gas of the Korean diving women (Ama). J. Appl. Physiol.18:457–465 (May 1963).Google Scholar
  179. Hong, S. K., S. H. Song, P. K. Kim, and C. S. Suh. Seasonal observations on the cardiac rhythm during diving in the Korean Ama. J. Appl. Physiol.23:18–22 (July 1967).Google Scholar
  180. Hong, S. K., C. K. Lee, J. K. Kim, S. H. Song, and D. W. Rennie. Peripheral blood flow and heat flux of Korean women divers. Fed. Proc.28:1143–1148 (May/June 1969a).Google Scholar
  181. Hong, S. K., P. Cerretelli, J. C. Cruz, and H. Rahn. Mechanics of respiration during submersion in water. J. Appl. Physiol. 27:535–538 (Oct. 1969).Google Scholar
  182. Hong, S. K., T. O. Moore, G. Seto, H. K. Park, W. R. Hiatt, and E. M. Beqnauer. Lung volumes and apneic bradycardia in divers. J. Appl. Physiol.29:172–176 (Aug. 1970).Google Scholar
  183. Hong, S. K., Y. C. Lin, D. A. Lally, B. J. B. Yim, N. Konirnami, P. W. Hong, and T. O. Moore. Alveolar gas exchanges and cardiovascular functions during breath-holding with air. J. Appl. Physiol.30:540–547 (Apr. 1971).Google Scholar
  184. Hong, S. K., T. O. Moore, D. A. Lally, and J. F. Morlock. Heart rate response to apneic face immersion in hyperbaric heliox environment. J. Appl. Physiol.34:770–774 (June 1973).Google Scholar
  185. Horne, T. Protective action of some vitamin K analogues against the toxic action of hyperbaric oxygen. Biochem. J.100:11p (July 1966).Google Scholar
  186. Hunt, H., E. Reeves, and E. L. Beckman. An experiment in maintaining homeostasis in a long distance underwater swimmer. U. S. Nav. Med. Res. Inst., Rep. 2 on MR005.13-4001.06 (July 23, 1964).Google Scholar
  187. Idicula, J., D. J. Graves, J. A. Quinn, and C. J. Lambertsen. Bubble formation resulting from steady counterdiffusion of two inert gases. In: Proceedings of the Fifth Symposium on Underwater Physiology, August 1972, Freeport, Bahamas. In press.Google Scholar
  188. Institute For Environmental Medicine. Practical Aspects of Oxygen Tolerance and Oxygen Toxicity. Philadelphia, University of Pennsylvania (April 1970).Google Scholar
  189. Jamieson, D., and H. A. S. Van Den Brenk. The effects of antioxidants on high pressure oxygen toxicity. Biochem. Pharmacol.13:159–164 (Feb. 1964).CrossRefGoogle Scholar
  190. Jarrett, A. S. Alveolar carbon dioxide at increased ambient pressures. J. Appl. Physiol.21:158–162 (Jan. 1966).Google Scholar
  191. Jegou, A. Deep diving and cold water, some practical results. In: The Working Diver, 1972. Symposium Proceedings, February 1972, Columbus, Ohio, pp. 127-143; Washington, D. C., Marine Technology Society (1972).Google Scholar
  192. Jenkins, W. T. Personal communication (1973).Google Scholar
  193. Jerett, S. A., D. Jefferson, and C. E. Mengel. Seizures, hydrogen peroxide formation and lipid peroxides in brain during exposure to oxygen under high pressure. Aerosp. Med.44:40–44 (Jan. 1973).Google Scholar
  194. Johnson, S. M., and K. W. Miller. Antagonism of pressure and anesthesia. Nature228:75–76 (Oct. 3, 1970).CrossRefGoogle Scholar
  195. Josenhans, W. T., G. N. Melville, and W. T. Ulmer. The effect of facial cold stimulation on airway conductance in healthy man. Can. J. Physiol. Pharmacol.47:453–457 (May 1969).CrossRefGoogle Scholar
  196. Kann, H. E., Jr., C. E. Mengel, W. Smith, and B. Horton. Oxygen toxicity and vitamin E. Aerosp. Med.35:840–844 (Sept. 1964).Google Scholar
  197. Kaplan, S. A., and S. N. Stein. Effects of oxygen at high pressure on the transport of potassium, sodium, and glutamate in guinea pig brain cortex. Amer. J. Physiol.190:157–162 (July 1957)Google Scholar
  198. Kawakami, Y., B. H. Natelson, and A. B. Dubois. Cardiovascular effects of face immersion and factors affecting diving reflex in man. J. Appl. Physiol23:964–970 (Dec. 1967).Google Scholar
  199. Kay, H. Report on arctic trials on board HMS Vengeance February–March 1949. London, England, Med. Res. Counc., Roy. Nav. Pers. Res. Comm., Rep. 534 (1949).Google Scholar
  200. Keatinge, W. R. Survival in Cold Water. Oxford and Edinburgh, Blackwell Scientific Publications (1969).Google Scholar
  201. Keatinge, W. R., M. B. Mcilroy, and A. Goldfien. Cardiovascular responses to ice-cold showers. J. Appl. Physiol.19:1145–1150 (Nov. 1964).Google Scholar
  202. Keller, H. Use of multiple inert gas mixtures in deep diving. In: Lambertsen, C. J., ed. Underwater Physiology. Proceedings of the Third Symposium on Underwater Physiology, pp. 267–274. Baltimore, Williams and Wilkins (1967).Google Scholar
  203. Keller, H., and A. A. Bühlmann. Deep diving and short decompression by breathing mixed gases. J. Appl. Physiol. 1267–1270 (Nov. 1965).Google Scholar
  204. Khambatta, H. J., and R. A. Baratz. IPPB, plasma ADH, and urine flow in conscious man. J. Appl. Physiol.33:362–364 (Sept. 1972).Google Scholar
  205. Kiessling, R. J., and C. H. Maag. Performance impairment as a function of nitrogen narcosis. J. Appl. Psychol.46:91–95 (Apr. 1962).CrossRefGoogle Scholar
  206. Kindwall, E. P. Medical aspects of commercial diving and compressed air work. In: Zenz, C., ed. Occupational Medicine: Principles and Practical Applications. Chicago, Medical Yearbook Publications. In press.Google Scholar
  207. Kinney, J. A. S., and C. L. Mckay. The visual-evoked response as a measure of nitrogen narcosis in Navy divers. U. S. Nav. Submar. Med. Cent., Rep. SMRL 664 (Apr. 21, 1971).Google Scholar
  208. Kinney, J. A. S., C. L. Mckay, A. Mensch, and S. M. Luria. The visual-evoked response as a measure of stress in naval environments: methodology and analysis. U. S. Nav. Submar. Med. Cent., Rep. SMRL 669 (June 25, 1971).Google Scholar
  209. Kinney, J. A. S., C. L. Mckay, and S. M. Luria. Visual evoked responses for divers breathing various gases at depths to 1200 feet. U. S. Nav. Submar. Med. Cent., Rep. SMRL 705 (Mar. 23, 1972).Google Scholar
  210. Cooi, K. Fundamentals of Electroencephalography. New York, Harper and Row (1971).Google Scholar
  211. Kydd, G. H. Observations on acute and chronic oxygen poisoning. Aerosp. Med.35:1176–1179 (Dec. 1964).Google Scholar
  212. Kylstra, J. A. Breathing fluid. Experientia18(2): 68 (1962).CrossRefGoogle Scholar
  213. Kylstra, J. A. Hydraulic compression of mice to 166 atm. Science158:793–794 (1967).CrossRefGoogle Scholar
  214. Kylstra, J. A., I. S. Longmuir, and M. Grace. Dysbarism: osmosis caused by dissolved gas. Science161:289 (1968).CrossRefGoogle Scholar
  215. Kylstra, J. A., W. H. Schoenfisch, J. M. Herron, and G. D. Blenkarn. Gas exchange in saline-filled lungs of man. J. Appl. Physiol.35:136–142 (July 1973).Google Scholar
  216. Lally, D. A., T. O. Moore, and S. K. Hong. Cardiorespiratory responses to exercise in air and water at 1 and 2 ATA. Honolulu, Univ. Hawaii, Sch. Med., Dept. Physiol., Rep. UNIHI-SEAGRANT-TR-71-04 (Dec. 1971).Google Scholar
  217. Lambertsen, C. J. Respiratory and circulatory actions of high oxygen pressure. In: Goff, L. G., ed. Proceedings of the Underwater Physiology Symposium, pp. 25–38, Washington, D. C., National Academy of Science-National Research Council (1955), Publ. 377.Google Scholar
  218. Lambertsen, C. J. Carbon dioxide and respiration in acid-base homeostasis. Anesthesiology21:642–651 (Nov./Dec. 1960).CrossRefGoogle Scholar
  219. Lambertsen, C. J. Physiological effects of oxygen. In: Lambertsen, C. J., and L. J. Greenbaum, Jr. eds. Proceedings of the Second Symposium on Underwater Physiology, pp. 171–187. Washington, D. C., National Academy of Sciences-National Research Council (1963).Google Scholar
  220. Lambertsen, C. J. Effects of oxygen at high partial pressure. In: Fenn, W. O., and H. Rahn, eds. Handbook of Physiology, Section 3: Respiration, Vol. II, pp. 1027–1046. Washington, D. C., American Physiological Society (1965).Google Scholar
  221. Lambertsen, C. J. Discussion. In: Brown, I. W., and B. G. Cox, eds. Proceedings of the Third International Conference on Hyperbaric Medicine, p. 207. Washington, D. C., National Academy of Sciences-National Research Council (1966a).Google Scholar
  222. Lambertsen, C. J. Oxygen toxicity. In: Committee on Hyperbaric Oxygenation. Fundamentals of Hyperbaric Medicine, pp. 21–40; Washington, D. C., National Academy of Sciences-National Research Council (1966b).Google Scholar
  223. Lambertsen, C. J. Chemical control of respiration at rest. In: Mountcastle, V. B., ed. Medical Physiology, pp. 713–763. St. Louis, Mosby (1968).Google Scholar
  224. Lambertsen, C. J. Therapeutic gases: Oxygen, carbon dioxide, and helium. In: DiPalma, J. R., ed. Drill’s Pharmacology in Medicine, fourth edition, pp. 1145–1179. New York, McGraw-Hill (1971).Google Scholar
  225. Lambertsen, C. Collaborative investigation of limits of human tolerance to pressurization with helium, neon and nitrogen. Simulation of density equivalent to helium-oxygen respiration at depths to 2,000,3,000,4,000, and 5,000 feet of sea water. In: Proceedings of the Fifth Symposium on Underwater Physiology, Freeport, Bahamas, August 1972. In press.Google Scholar
  226. Lambertsen, C. J., R. H. Kough, D. Y. Cooper, G. L. Emmel, H. H. Loeschcke, and C. F. Schmidt. Oxygen toxicity. Effects in man of oxygen inhalation at 1 and 3.5 atmospheres upon blood gas transport, cerebral circulation and cerebral metabolism. J. Appl. Physiol.5:471–486 (Mar. 1953).Google Scholar
  227. Langley, T. D. Neurophysiological investigation of inert gas depression of the central nervous system. Tarrytown, N. Y., Ocean Systems, Inc., Ann. Prog. Rep. on ONR contract N00014-69-C-0405 (April 30, 1970).Google Scholar
  228. Langley, T. D. Somatic and auditory evoked brain responses in many breathing mixtures of normoxic helium, nitrogen and neon at pressures to 37 atmospheres. In: Proceedings of the Fifth Symposium on Underwater Physiology, Freeport, Bahamas, August 1972. In press.Google Scholar
  229. Lanphier, E. H. Interactions of factors limiting performance at high pressures. In: Lambertsen, C. J. Underwater Physiology. Proceedings of the Third Symposium on Underwater Physiology, pp. 375-385. Baltimore, Williams and Wilkins (1967).Google Scholar
  230. Lanphier, E. H. Pulmonary function. In: Bennett, P. B., and D. H. Elliott, eds. The Physiology and Medicine of Diving and Compressed Air Work, pp. 58-112. Baltimore, Williams and Wilkins (1969).Google Scholar
  231. Lanphier, E. H., and H. Rahn. Alveolar gas exchange during breath-hold diving. J. Appl. Physiol.18:471–477 (May 1963).Google Scholar
  232. Larson, H. E. A history of self-contained diving and underwater swimming. Publication 469. Washington, D. C., National Academy of Sciences-National Research Council (1959).Google Scholar
  233. Lassiter, D. V., ed. Occupational exposure to carbon monoxide. HSM 73-11000. Washington, D. C., Department of Health, Education, and Welfare (1972).Google Scholar
  234. Leboucher, F. Status report on equipment developments in the French Navy. In: Equipment for the Working Diver. Symposium Proceedings, February 24–25, 1970, Columbus, Ohio, pp. 345-351. Washington, D. C., Marine Technology Society (1970).Google Scholar
  235. Lee, O. The Complete Illustrated Guide to Snorkel and Deep Diving. New York, Doubleday (1967).Google Scholar
  236. Lenfant, C., and B. Howell. Cardiovascular adjustments in dogs during continuous pressure breathing. In: Rahn, H., ed. Studies in Pulmonary Physiology. WADD Tech. Rep. 60-1 (1960).Google Scholar
  237. Leon, H. A., and S. F. Cook. A mechanism by which helium increases metabolism in small animals. Amer. J. Physiol.199:243–245 (Aug. 1960).Google Scholar
  238. Lever, M. J., K. W. Miller, W. D. Paton, and E. B. Smith. Pressure reversal of anesthesia. Nature231:368–371 (June 11, 1971).CrossRefGoogle Scholar
  239. Macinnis, J. B. Some comparisons of U. S. Navy and civilian diving programs. In: Progress into the Sea. Transactions of the Symposium, October 1969, pp. 129–134. Washington, D. C., Marine Technology Society (1970).Google Scholar
  240. Macinnis, J. B. Arctic diving and problems of performance. In: The Working Diver, 1972. Symposium Proceedings, February 1972, Columbus, Ohio, pp. 159-174. Washington, D. C., Marine Technology Society (1972).Google Scholar
  241. Mackworth, N. H. Finger numbness in very cold winds. J. Appl. Physiol.5:533–543 (Mar. 1953).Google Scholar
  242. Maio, D. A., and L. E. Farhi. Effect of gas density on mechanics of breathing. J. Appl. Physiol.23:687–693 (Nov. 1967).Google Scholar
  243. Mather, G. W., G. G. Nahas, and A. Hemingway. Temperature changes of pulmonary blood during exposure to cold. Amer. J. Physiol173:390–392 (June 1953).Google Scholar
  244. Mccally, M. Body fluid volumes and the renal response to immersion. In: Physiology of Breath-Hold Diving and the Ama of Japan, pp. 253-269. Washington, D. C., National Academy of Sciences-National Research Council (1965), Publ. 1341.Google Scholar
  245. Mcsherry, C. K., and F. J. Veith. The relation between the central nervous system and pulmonary forms of oxygen toxicity: Effect of THAM administration, Surg. Forum19:33–35 (1968).Google Scholar
  246. Mead, J., and J. Milic-Emili. Theory and methodology in respiratory mechanics with glossary of symbols. In: Fenn, W. O., and H. Rahn, eds. Handbook of Physiology, Section 3, Vol. I, pp. 363–376. Washington, D. C., American Physiological Society (1964).Google Scholar
  247. Merck Manual of Diagnosis and Therapy. Twelfth edition. Rahway, N. J., Merck Sharp and Dohme Research Laboratories (1972).Google Scholar
  248. Meyer, H. H. Theorie der Alkoholnarkose. I. Mittweiche Eigenschaft der Anasthetika bedingt ihre narkotische Wirking. Arch. Exper. Path. Pharmakol.42:109 (May 1899).CrossRefGoogle Scholar
  249. Miles, S. Underwater Medicine. London, Staple Press (1965).Google Scholar
  250. Miles, S. Underwater Medicine. Third edition. Philadelphia, J. B. Lippincott (1969).Google Scholar
  251. Miller, J. N., O. D. Wangansteen, and E. H. Lanphier. Ventilatory limitations on exertion at depth. In: Lambertsen, C. J., ed. Underwater Physiology. Proceedings of the Fourth Symposium on Underwater Physiology, pp. 317-323. New York, Academic Press (1971).Google Scholar
  252. Miller, J. W., J. G. Van Derwalker, and R. A. Waller, eds. TEKTITE 2. Scientists-in-the Sea. Washington, D. C., U. S. Department of the Interior (August 1971).Google Scholar
  253. Miller, K. W., W. D. M. Paton, W. B. Street, and E. B. Smith. Animals at very high pressures of helium and neon. Science157:97–98 (July 7, 1967a).CrossRefGoogle Scholar
  254. Miller, K. W., W. D. M. Paton, and E. B. Smith. The anesthetic pressures of certain fluorine-containing gases. Brit. J. Anaesth.39:910–917 (Dec. 1967b).CrossRefGoogle Scholar
  255. Miller, K. W., W. D. M. Paton, R. A. Smith, and E. B. Smith. The pressure reversal of anesthesia and the critical volume hypothesis. Mol. Pharmacol.9(2):131–143 (1973).Google Scholar
  256. Miller, S. L. A Theory of gaseous anesthetics. Proc. Nat. Acad. Sci. U. S. 47:1515 (Sept. 15, 1961). Mithoefer, J. C. Breath-holding. In: Fenn, W. O., and H. Rahn, eds. Handbook of Physiology, Section 3, Vol. II, pp. 1011-1025. Washington, D. C., American Physiological Society (1965).Google Scholar
  257. Money, D. F. L., and P. J. Strong. Underwater diving, oxygen poisoning and vitamin E. N. Z. Med. J.75:34–35 (Jan. 1972).Google Scholar
  258. Moore, T. O., E. M. Bernauer, G. Seto, Y. S. Park, S. K. Hong, and E. M. Hayashi. Effect of immersion at different water temperatures on graded exercise performance in man. Aerosp. Med.41:1404–1408 (Dec. 1970).Google Scholar
  259. Moore, T. O., Y. C. Lin, D. A. Lally, and S. K. Hong. Effects of temperature, immersion, and ambient pressure on human apneic bradycardia. J. Appl. Physiol.33:36–41 (July 1972).Google Scholar
  260. Moore, T. O., R. Elsner, Y. C. Lin, D. A. Lally, and S. K. Hong. Effects of alveolar PO2 and PCO2 on apneic bradycardia in man. J. Appl. Physiol.34:795–798 (June 1973).Google Scholar
  261. Moore, T. O., J. F. Morlock, D. A. Lally, and S. K. Hong. Thermal cost of saturation diving: Respiratory and whole body heat loss at 16.1 ATA. In: Proceedings of the Fifth Symposium on Underwater Physiology, Freeport, Bahamas, 1972. In press.Google Scholar
  262. Moreno, F., and H. A. Lyons. Effect of body posture on lung volumes. J. Appl. Physiol.16:27–29 (Jan. 1961).Google Scholar
  263. Morrison, J. B. Respiratory function. In: Hempleman, H. V., ed. Experimental observations on men at pressures between 4 bars (100 ft) and 47 bars (1500 ft), pp. 34-59. Alverstoke, U. K., Roy. Navy Physiol. Lab., Rep. 1-71 (1971).Google Scholar
  264. Murphy, T. M., W. H. Clark, I. P. B. Buckingham, and W. A. Young. Respiratory gas exchange in exercise during helium-oxygen breathing. J. Appl. Physiol.26:303–307 (Mar. 1969).Google Scholar
  265. Myers, R. D., and L. G. Sharpe. Temperature in the monkey: transmitter factors released from the brain during thermoregulation. Science161:572–573 (Aug. 9, 1968).CrossRefGoogle Scholar
  266. Naquet, R., and J. C. Rostain. Postponing the “High pressure nervous syndrome” (H.P.N.S.) down to 500 meters and deeper. The evolution of H.P.N.S. with depth, compression rate and bottom time. In: Lambertsen, C. J., ed. Proceedings of the Fifth Symposium on Underwater Physiology, Freeport, Bahamas, 1972. In press.Google Scholar
  267. Nichols, C. W., and C. J. Lambertsen. Effects of oxygen upon ophthalmic structures. In: Lambertsen, C. J., ed. Underwater Physiology, Proceedings of the Fourth Symposium on Underwater Physiology, pp. 57–66. New York, Academic Press (1971).Google Scholar
  268. Ornhagen, H. C., and C. E. G. Lundgren. Hydrostatic pressure tolerance in liquid breathing mice. In: Proceedings of the Fifth Symposium on Underwater Physiology, Freeport, Bahamas, August 1972. In press.Google Scholar
  269. Othmer, D. F., and O. A. Reels. Power, fresh water, and food from cold, deep sea water. Science182:121–125 (Oct. 12, 1973).CrossRefGoogle Scholar
  270. Overton, E. Studies uberdie Narkose. Jena, East Germany, Fischer (1901).Google Scholar
  271. Paton, W. D. M., and A. Sand. The optimum intrapulmonary pressure in underwater respiration. J. Physiol. (London)106:119–138 (June 1947).Google Scholar
  272. Paulev, P. E. Respiratory and cardiovascular effect of breath-holding. Acta Physiol. Scand. Suppl. 324 (1969).Google Scholar
  273. Pauling, L. A molecular theory of general anesthesia. Science134:15–21 (July 7, 1961).CrossRefGoogle Scholar
  274. Philp, R. B., C. W. Gowdey, and M. Prasad. Changes in blood lipid concentration and cell counts following decompression sickness in rats and the influence of dietary lipid. Can. J. Physiol. Pharmacol.45:1047–1059 (Nov. 1967).CrossRefGoogle Scholar
  275. Poulton, E. C. Environment and Human Efficiency. Springfield, Ill., Charles C Thomas (1970).Google Scholar
  276. Rahn, H. The physiological stresses of the Ama. In: Rahn, H., and T. Yokoyama, eds. Physiology of Breath-Hold Diving and the Ama of Japan, pp. 295-302. Washington, D. C., National Academy of Sciences-National Research Council (1965), Publ. 1341.Google Scholar
  277. Randall, J. E. Analog and digital computers in the study of physiologic tremor. Arch. Phys. Med. Rehab.48:463–466 (1967).Google Scholar
  278. Raper, A. J., D. W. Richardson, H. A. Kontos, and J. L. Patterson, Jr. Circulatory responses to breath holding in man. J. Appl. Physiol.22:201–206 (Feb. 1).Google Scholar
  279. Rawlins, J. S. P. Thermal balance in divers. J. Roy. Nav. Med. Serv.58:182–188 (Winter 1972).Google Scholar
  280. Raymond, L. W. Temperature problems in multiday exposures to high pressures in the sea. Thermal balance in hyperbaric atmospheres. In: Lambertsen, C. J., ed. Underwater Physiology. Proceedings of the Third Symposium on Underwater Physiology. 23–26 March, 1966, Washington, D. C., pp. 138-147. Baltimore, Williams and Wilkins (1967).Google Scholar
  281. Raymond, L. W. The thermal environment for undersea habitats. In: Human Factors 1970, Symposium of the American Society of Heating, Refrigerating and Air Conditioning Engineers, San Francisco, January 1970, pp. 22-24 (1971).Google Scholar
  282. Raymond, L., W. H. Bell II, K. R. Bondi, and C. R. Lindberg. Body temperature and metabolism in hyperbaric helium atmospheres. J. Appl. Physiol.24:678–684 (May 1968).Google Scholar
  283. Raymond, L., R. B. Weiskopf, M. J. Halsey, A. Goldfien, E. I. Eger III, and J. W. Severinghaus. Possible mechanisms for the antiarrhythmic effect of helium in anesthetized dogs. Science176:1250–1252 (June 16, 1972).CrossRefGoogle Scholar
  284. Raymond, L. W., H. C. Langworthy, J. Sode, and J. Blosser. Metabolic responses to work in 25°C water at 3 meters. In preparation.Google Scholar
  285. Raymond, L. W., E. D. Thalmann, W. H. Spaur, W. R. Braithwaite, J. H. Crothers, and H. C. Langworthy. Thermal homeostasis of man in helium-oxygen at 1–50 atmospheres absolute. In preparation.Google Scholar
  286. Reeves, E., J. W. Weaver, J. J. Benjamin, and C. H. Mann. Comparison of physiological changes during long term immersion to neck levels in water at 95°, 85° and 75°F. U. S. Nav. Med. Res. Inst., Rep. 9 on MF011.99-1001 (1965).Google Scholar
  287. Roger, A., P. Cabarrou, and H. H. Gastaut. EEG changes in humans due to changes in surrounding atmospheric pressure. Electroencephalogr. Clin. Neurophysiol.7:152 (Feb. 1955).Google Scholar
  288. Rossier, P. H., and H. Mean. L’insuffisance pulmonaire. Schweiz. Med. Wochenschr.73(11):327–332 (March 13, 1943).Google Scholar
  289. Russell, C. J., A. Mcneil, and E. Evonuk. Some cardiorespiratory and metabolic responses of scuba divers to increased pressure and cold. Aerosp. Med.43:998–1001 (Sept. 1972).Google Scholar
  290. Saltzman, H. A., L. Hart, B. Anderson, E. Duffy, and H. O. Sieker. The response of the retinal circulation to hyperbaric oxygenation. J. Clin. Invest.43:1283 (June 1964).Google Scholar
  291. Salzano, J., D. C. Rausch, and H. A. Saltzman. Cardiorespiratory responses to exercise at a simulated seawater depth of 1,000 feet. J. Appl. Physiol.28:34041 (Jan. 1970).Google Scholar
  292. Sanders, A. P., and W. D. Currie. Chemical protection against oxygen toxicity. In: Lambertsen, C. J., ed. Underwater Physiology. Proceedings of the Fourth Symposium on Underwater Physiology, pp. 35–40. New York, Academic Press (1971).Google Scholar
  293. Sanders, A. P., I. H. Hall, and B. Woodhall. Succinate: Protective agent against hyperbaric oxygen toxicity. Nature150(3075): 1830–1831 (1965).Google Scholar
  294. Sanders, A. P., R. M. Gelien, Jr., R. S. Cramer, and W. D. Currie. Protection against the chronic effects of hyperbaric oxygen toxicity by succinate and reduced glutathione. Aerosp. Med.43:533–536 (May 1972).Google Scholar
  295. Sasamoto, H. The electrocardiogram pattern of the diving Ama. In: Rahn, H., and T. Yokoyama, eds. Physiology of Breath-Hold Diving and the Ama of Japan, pp. 271–280. Washington, D. C., National Academy of Sciences-National Research Council (1965), Publ. 1341.Google Scholar
  296. Sayers, R. R., W. P. Yant, and J. H. Hildebrand. Possibilities in the use of helium-oxygen mixtures as a mitigation of caisson disease. Serial No. 2670. Washington, D. C., U. S. Department of the Interior, Bureau of Mines (Feb. 1925).Google Scholar
  297. Schaefer, K. E. Environmental physiology of submarines and aircraft (atmospheric requirements of confined spaces). Arch. Environ. Health9:320–331 (Sept. 1964).Google Scholar
  298. Schaeffer, K. E., C. R. Carey, and J. Dougherty, Jr. Pulmonary gas exchange and urinary electrolyte excretion during saturation-excursion diving to pressures equivalent to 800 and 1,000 feet of seawater. Aerosp. Med.41:856–864 (Aug. 1Google Scholar
  299. Schmidt, T. C., D. J. Kenyon, M. Freitag, and R. W. Hamilton, Jr. Recovery and reuse of diving gas. In: Battelle Columbus Laboratories. Proceedings, 1973 Divers’ Gas Purity Symposium, November 27–28, 1973, pp. XV-1-XV-12. Washington, D. C., U. S. Navy Supervisor of Diving (1973).Google Scholar
  300. Schmidt, T. C., R. W. Hamilton, Jr., G. Moeller, and C. P. Chattin. Diver performance during NOAA OPS I and II: Cognitive and psychomotor performance during nitrogen saturation exposures of 7-day duration at 2, 3, 4, 5, atm and air excursions to pressures up to 10 atm. U. S. Nav. Submar. Med. Cent., Rep. In press.Google Scholar
  301. Schoenfisch, W. H., and J. A. Kylstra. Maximum expiratory flow and estimated CO2 elimination in liquid ventilated dogs’ lungs. J. Appl. Physiol.35:117–121 (July 1973).Google Scholar
  302. Scholander, P. F. Physiological adaptation to diving in animals and man. Harvey Lecture Ser.57:93–110(1961/1962).Google Scholar
  303. Scholander, P. F. The master switch of life. Sci. Amer.209:92–106 (Dec. 1963).CrossRefGoogle Scholar
  304. Scholander, P. F., H. T. Hammel, H. Lemessurier, E. Hemmingsen, and W. Garey. Circulatory adjustment in pearl divers. J. Appl. Physiol.17:184–190 (Mar. 1962).Google Scholar
  305. Schreiner, H. R. Advances in decompression research. J. Occup. Med.11:229–237 (May 1969).Google Scholar
  306. Schreiner, H. R., and P. L. Kelley. Computation methods for decompression from deep dives. In: Lambertsen, C. J. ed. Underwater Physiology. Proceedings of the Third Symposium on Underwater Physiology, pp. 275–299. Baltimore, Williams and Wilkins (1967).Google Scholar
  307. Schreiner, H. R., and P. L. Kelley. A pragmatic view of decompression. In: Lambertsen, C. J., ed. Underwater Physiology. Proceedings of the Fourth Symposium on Underwater Physiology, pp. 205–219. New York, Academic Press (1971).Google Scholar
  308. Schreiner, H. R., J. A. Laurie, and R. C. Gregovie. The effect of helium and the rare gases on cellular growth. Physiologist5:210 (Aug. 1962).Google Scholar
  309. Schreiner, H. R., R. W. Hamilton, Jr., and T. D. Langley. Neon: An attractive new commercial diving gas. In: 1972 Offshore Technology Conference, May 1–3, Houston, Texas. Preprints, Vol. I, pp. 501-516. Published by the Conference (1972).Google Scholar
  310. Sears, D. F. Mechanisms of anesthesia. III Role of lipid molecules in anesthesia and narcosis. In: Proceedings of the Twenty-Second International Congress of Physiological Sciences, Leiden, Holland London, Excerpta Medica Foundation (1962).Google Scholar
  311. Sears, D. F., and E. L. Fuller. Volume changes of polar and non-polar liquid hydrocarbons exposed to pressures of gases. Resp. Physiol.5:175–186 (1968).CrossRefGoogle Scholar
  312. Segui, G., and V. Conti. Comportement alimentaire de tiors oceanauties au cours d’une experience de vie a saturation. Bull. Medsubhyp7:15–18 (Oct. 1972).Google Scholar
  313. Senay, L. C., Jr. Body temperature regulation: a critical commentary on selected topics. In: Iberall, A. S., and A. C. Guyton, eds. Regulation and Control in Physiological Systems. Conference Proceedings, Rochester, N. Y., August 1973, pp. 207-211. Pittsburgh, Pa., Instrument Society of America (1973).Google Scholar
  314. Sergeant, R. L. Distortion of speech. In: Bennett, P. B., and D. H. Elliott, eds. The Physiology and Medicine of Diving and Compressed Air Work, pp. 211–225. Baltimore, Williams and Wilkins (1969).Google Scholar
  315. Sergeant, R. L. The intelligibility of hydrogen-speech at 200 fsw equivalent. U. S. Naval Submarine Medical Research Lab., Rep. NSMRL 701 (Mar. 1, 1972).Google Scholar
  316. Shilling, C. W. The Human Machine. Annapolis, Md., U. S. Nav. Inst. (1955).Google Scholar
  317. Shilling, C. W., and W. W. Willgrube. Quantitative study of mental and neuromuscular reactions as influenced by increased air pressure. U. S. Nav. Med. Bull.35:373–380 (Oct. 1937).Google Scholar
  318. Silverman, L., G. Lee, T. Plothin, L. H. Sawyer, and A. R. Uangy. Air flow measurements on human subjects with and without respiratory resistance at several work rates. Arch. Ind. Hyg. Occup. Med.3:461 (1951).Google Scholar
  319. Siple, P. A. In: Newburgh, L. H., ed. Physiology of Heat Regulation and the Science of Clothing, pp. 422-424. New York, Hafner (1949).Google Scholar
  320. Slack, D. S. Recycling systems for helium. In: Professional diving symposium, New Orleans, November 1972. Mar. Technol. Soc. J.7:13–16 (Mar./Apr. 1973).Google Scholar
  321. Sloan, R. E. G., and W. R. Keatinge. Cooling rates of young people swimming in cold water. J. Appl. Physiol.35:371–375 (Sept. 1973).Google Scholar
  322. Smith, D. G., and D. J. Harris. Human exposure to Halon 1301 (CBrF3) during simulated aircraft cabin fires. Aerosp. Med.44:198–201 (Feb. 1973).Google Scholar
  323. Smith, G. B., Jr. and E. G. Hames. Estimation of tolerance times for cold water immersion. Aerosp. Med.33:834–840 (July 1962).Google Scholar
  324. Smith, J. G. Low temperature performance of CO2 scrubber systems. In: Battelle Columbus Laboratories. Proceedings, 1973 Divers’ Gas Purity Symposium, November 27–28, 1973, pp. II-1-II-34. U. S. Navy Supervisor Diving, Nav. Ships Syst. Comm., Rep. 2-73 (1973).Google Scholar
  325. Smith, K. J., E. W. Speckman, and R. L. Hein. Selected bibliography on the sustenance of man in aerospace systems. Wrightsville Air Force Base, Aerosp. Med. Res. Lab., Rep. (May 1966).Google Scholar
  326. Song, S. H., W. K. Lee, Y. A. Chung, and S. K. Hong. Mechanism of apneic bradycardia in man. J. Appl. Physiol.27:323–327 (Sept. 1969).Google Scholar
  327. Spaur, W. H. 1600 ft dive, 20 April–20 May, 1973. U. S. Navy Exp. Diving Unit, U. S. Nav. Med. Res. Inst., Bur. Med. Surg., Rough draft (May 20, 1973).Google Scholar
  328. Stang, P. R., and E. L. Weiner. Diver performance in cold water. Hum. Factors12:391–399 (Aug. 1970).Google Scholar
  329. Stein, S. N. Neurophysiological effects of oxygen at high partial pressure. In: Goff, L. G. ed. Proceedings of the Underwater Physiology Symposium, pp. 20-24. Washington, D. C., National Academy of Sciences-National Research Council (1955), Publ. 377.Google Scholar
  330. Stern, S. A., and H. L. Frisch. Dependence of inert gas narcosis on lipid “free volume.” J. Appl. Physiol.34:366–373 (Mar. 1973).Google Scholar
  331. Stiles, R. N., and J. E. Randall. Mechanical factors in human tremor. J. Appl. Physiol.23:324–330 (1967).Google Scholar
  332. Strauss, M. B. Physiological aspects of mammalian breath-hold diving: a review. Aerosp. Med.41:1362–1381 (Dec. 1970).Google Scholar
  333. Strauss, R. H., W. B. Wright, R. E. Peterson, M. J. Lever, and C. J. Lambertsen. Respiratory function in exercising subjects breathing nitrogen, helium or neon mixtures at pressures from 1 to 37 atmospheres absolute. In: Proceedings of the Fifth Symposium on Underwater Physiology, Freeport, Bahamas, August 1972. In press.Google Scholar
  334. Stromme, S. B., D. Kerem, and R. Elsner. Diving bradycardia during rest and exercise and its relation to physical fitness. J. Appl. Physiol.28:614–621 (May 1970).Google Scholar
  335. Summitt, J. K., J. S. Kelly, J. M. Herron, and H. A. Saltzman. 1000-ft helium saturation exposure. In: Lambertsen, C. J. ed. Underwater Physiology. Proceedings of the Fourth Symposium on Underwater Physiology, pp. 519–527. New York, Academic Press (1971).Google Scholar
  336. Suzuki, M., T. Tonoue, S. Matsuzaki, and K. Yamamoto. Initial response of human thyroid, adrenal cortex, and adrenal medulla to acute cold exposure. Can. J. Physiol. Pharmacol.45:423–432 (May 1967).CrossRefGoogle Scholar
  337. Taylor, D. W. The effects of vitamin E and methylene blue on the manifestations of oxygen poisoning in the rat. J. Physiol.131:200–206 (Jan. 1956).Google Scholar
  338. Teichner, W. H. Assessment of mean body surface temperature. J. Appl. Physiol.12:169–176 (Mar. 1958).Google Scholar
  339. Thompson, L. J., M. Mccally, and A. S. Hyde. The effects of posture, breathing pressure and immersion in water on lung volumes and intrapulmonary pressures. U. S. Air Force, Aerosp. Med. Res. Lab., Rep. AMRL-TR-66-201 (May 1967).Google Scholar
  340. Thorn, G. W., D. Jenkins, and J. C. Laidlaw. The adrenal response to stress in man. Rec. Prog. Horm. Res.8:171–215 (1953).Google Scholar
  341. Thorne, D. R., A. J. Bachrach, and A. W. Findling. Muscle tremors under helium, neon, nitrogen, and nitrous oxide at 1 to 37 atm. J. Appl. Physiol. In press.Google Scholar
  342. Uhl, R. R., C. Van Dyke, R. B. Cook, R. A. Horst, and J. M. Merz. Effects of externally imposed mechanical resistance on breathing dense gas at exercise: mechanics of breathing. Aerosp. Med.43:836–841 (Aug. 1972).Google Scholar
  343. Unsworth, A., D. Dowson, and V. Wright. Cracking joints. A bioengineering study of cavitation in the metacarpophalangeal joint. Ann. Rheum. Dis.30:348 (1971).CrossRefGoogle Scholar
  344. Us S. Navy. U. S. Navy Diving Manual. Washington, D. C., Department of the Navy (1970) (NAVSHIPS 0994-001-9010).Google Scholar
  345. Van Den Brenk, H. A. S., and D. Jamieson. Brain damage and paralysis in animals exposed to high pressure oxygen; pharmacological and biochemical observations. Biochem. Pharmacol. 13:165–182 (Feb. 1964).CrossRefGoogle Scholar
  346. Van Tassel, P. V. Effect of dimercaprol on oxygen toxicity in rats. J. Appl. Physiol. 20:531–533 (May 1965).Google Scholar
  347. Varene, P., J. Timbal, H. Viellefond, H. Guenard, and L. Huillier. Energetic balance of man in simulated dive from 1.5 to 31 ATA. In: Lambertsen, C. J., ed. Proceedings of the Fifth Symposium on Underwater Physiology, Freeport, Bahamas, August 1972. In press.Google Scholar
  348. Vaughan, W. S., Jr. and B. G. Andersen. Effects of long-duration cold exposure on performance of tasks in naval inshore warfare operations. Landover, Md., Oceanautics, Inc., Tech. Rep. on Contract N00014-72-C-0309 (1973).Google Scholar
  349. Vorosmarti, J. Jr., M. E. Bradley, and N. R. Anthonisen. The effects of increased gas density on pulmonary mechanics. Unpublished paper presented at the twenty-fifth congress of physiological sciences satellite symposium: Recent progress in fundamental physiology of diving. Marseille, France (23–24 July, 1971).Google Scholar
  350. Waldvogel, W., and A. A. Bühlmann. Man’s reaction to long-lasting overpressure exposure. Examination of the saturated organism at a helium pressure of 21-22 ATA. Helv. Med. Acta34:130–150 (Mar. 1968).Google Scholar
  351. Watkins, J. C. Pharmacological receptors and general permeability phenomena of cell membranes. J. Theor. Biol.9:37–50 (July 1965).CrossRefGoogle Scholar
  352. Webb, P. Body heat loss in undersea gaseous environments. Aerosp. Med.41:1282–1288 (Nov. 1970).Google Scholar
  353. Webb, P. The thermal drain of comfortable hyperbaric environments. Nav. Res. Rev.26:1–7 (Mar. 1973a).Google Scholar
  354. Webb, P. Rewarming after diving in cold water. Aerosp. Med.44:1152–1157 (Oct. 1973b).Google Scholar
  355. Webb, P. Thermal stress in undersea activity. In: Proceedings of the Fifth Symposium on Underwater Physiology, Freeport, Bahamas, August 1972. In press.Google Scholar
  356. Webb, P., and J. F. Annis. Respiratory heat loss with high density gas mixtures. Final report on contact Nonr-4965(00). Yellow Springs, Ohio, Webb Associates (May 31, 1966).Google Scholar
  357. Welch, B. E., T. E. Morgan, and H. G. Clamann. Time-concentration effects in relation to oxygen toxicity in man. Symposium on respiratory physiology in manned spacecraft. Fed. Proc.22:1053 (1963).Google Scholar
  358. Weltman, G., G. H. Egstrom, M. A. Willis, and W. Cuccaro. Underwater work measurement techniques. Los Angeles, Univ. Cal., Sch. Eng. Appl. Sci., Rep. UCLA-ENG-7140 (July 1971).Google Scholar
  359. Wilson, O., P. Hedner, S. Laurell, B. Nosslin, C. Rerup, and E. Tosengren. Thyroid and adrenal response to acute cold exposure in man. J. Appl. Physiol.28:543–548 (May 1970).Google Scholar
  360. Wittner, M., and R. M. Rosenbaum. The physiological pathology of pulmonary oxygen toxicity. In: Brown, I. W., Jr. and B. G. Cox, eds. Proceedings of the Third International Conference on Hyperbaric Medicine, Duke University, November 1965, pp. 319-321. Washington, D. C., National Academy of Sciences-National Research Council (1966).Google Scholar
  361. Won, W. D., and H. Ross. Relationship of low environmental temperature to mouse resistance to infection with Klebsiella pneumoniae. Aerosp. Med.42:642–645 (June 1971).Google Scholar
  362. Wood, J. D. Oxygen toxicity. In: Bennett, P. B., and D. H. Elliott, eds. The Physiology and Medicine of Diving and Compressed Air Work, pp. 113–114. Baltimore, Williams and Wilkins (1969).Google Scholar
  363. Wood, J. D., N. E. Stacey, and W. J. Watson. Pulmonary and central nervous system damage in rats exposed to hyperbaric oxygen and protection therefrom by gamma-aminobutyric acid. Can. J. Physiol. Pharmacol.43:405–410 (May 1965).CrossRefGoogle Scholar
  364. Wood, J. D., W. J. Watson, and F. M. Clydesdale. Gamma-aminobutyric acid and oxygen poisoning. J. Neurochem.10:625–633 (Sept. 1963).CrossRefGoogle Scholar
  365. Wood, L. D. H., and A. C. Bryan. Mechanical limitations of exercise ventilation at increased ambient pressure. In: Lambertsen, C. J., ed. Underwater Physiology. Proceedings of the Fourth Symposium on Underwater Physiology. New York, Academic Press (1971).Google Scholar
  366. Workman, R. D. Discussion. In: Lambertsen, C. J., and L. J. Greenbaum, Jr., eds. Proceedings of the Second Symposium on Underwater Physiology. Washington, D. C., National Academy of Sciences-National Research Council (1963), Publ. 1181.Google Scholar
  367. Workman, R. D. Calculation of decompression schedules for nitrogen-oxygen and helium-oxygen dives. U. S. Navy Exp. Diving Unit, Res. Rep. 6-65 (May 26, 1965).Google Scholar
  368. Workman, R. D. Underwater research interests of the U. S. Navy. In: Lambertsen, C. J., ed. Underwater Physiology. Proceedings of the Third Symposium on Underwater Physiology, pp. 4–15. Baltimore, Williams and Wilkins (1967).Google Scholar
  369. Workman, R. D. American decompression theory and practice. In: Bennett, P. B., and D. H. Elliott, eds. The Physiology and Medicine of Diving and Compressed Air Work, pp. 252–290. Baltimore, Williams and Wilkins (1969).Google Scholar
  370. Wright, W. B. Use of the University of Pennsylvania, Institute for Environmental Medicine procedure for calculation of cumulative pulmonary oxygen toxicity. U. S. Navy Exp. Diving Unit, Rep. NEDU 2-72 (1972).Google Scholar
  371. Wulf, R. J., and R. M. Featherstone. A correlation of Van der Waals constants with anesthetic potency. Anesthesiology18:97–105 (Jan./Feb. 1957).CrossRefGoogle Scholar
  372. Young, J. M. Acute oxygen toxicity in working man. In: Lambertsen, C. J., ed. Underwater Physiology. Proceedings of the Fourth Symposium on Underwater Physiology, pp. 67–76. New York, Academic Press (1971).Google Scholar
  373. Zaltsman, G. L., ed. Hyperbaric Epilepsy and Narcosis. Leningrad, Sechenov Institute of Evolutionary physiology and biochemistry, USSR Academy of Sciences (1968). (Translated as JPRS 51714. Washington, D. C. Joint Publications Research Service Nov. 4, 1970.)Google Scholar
  374. Zetterstrom, A. Deep-sea diving with synthetic gas mixtures. Milit. Surg.103:104–106 (1948).Google Scholar
  375. Zinkowski, N. B. Commercial Oilfield Diving. Cambridge, Md., Cornell Maritime Press (1971).Google Scholar

Copyright information

© Plenum Press, New York 1976

Authors and Affiliations

  • Charles W. Shilling
    • 1
  • Margaret F. Werts
    • 1
  • Nancy R. Schandelmeier
    • 1
  1. 1.Science Communication Division, Department of Medical and Public Affairs The Medical CenterThe George Washington UniversityUSA

Personalised recommendations