Secondary Defects in Boron Implanted Silicon

  • G. P. Pelous
  • D. P. Lecrosnier
  • P. Henoc


On 1 MeV Boron implanted silicon, we have drawn the depth distribution of secondary defects by using a combination of transmission electron microscopy and anodic strippingo From 1.6 µm to 2µm, perfect dislocation loops are the predominant defects. These loops lie into the {111} plane parallel to the surface. They are of vacancy type with a Burger vector of a/2 <110>. The density presents a maximum value located at the peak of Doron distributiono

This results suggest a long range interaction between primary defects and impurities, as an adsorption of boron atoms along the dislocations. To check this assumption, lattice site location of boron measurements have been performed, using “B(p, α)2α nuclear reaction and angular scans through the major axial and planar channeling dips. This results seem to indicate that almost of implanted boron lie on well-defined sites into {111} planes.


Burger Vector Dislocation Loop Boron Atom Boron Concentration Secondary Defect 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    T.E. Seidel, A.U. Mac Rae, Proco 1 st Int. Conf. on Ion Implantation, pp. 149–154, 1971Google Scholar
  2. 2.
    D.P. Lecrosnier, G.P. Pelons, European Conf. on Ion Implantation pp. 102–106, 1970Google Scholar
  3. 3.
    T.E. Seidel, A.U. Mac Rae, Transaction of the metallurgical Society of AIME, Vol. 245, 1969Google Scholar
  4. 4.
    W.K. Hofker, H.W. Werner, D.P. Oosthock, H.A.M. de Crefte, Appl. Phys. 2, 265–278, 1973ADSCrossRefGoogle Scholar
  5. 5.
    E. Ligeon, A. Bontemps, J. Radio Anal. Chem. 12, pp. 335–351, 1972CrossRefGoogle Scholar
  6. 6.
    G. Fladda, K. Björkqvist, D. Sigurd, Applied Physics Letters, 1970, Vol. 16, n° 8, 313ADSCrossRefGoogle Scholar
  7. 7.
    Hirsch et al., Electron microscopy of thin crystals, Butterworths London, 1965Google Scholar
  8. 8.
    G. Saada, Microscopie électronique des lames minces cristallines, Masson, Paris, 1966Google Scholar
  9. 9.
    B. Jouffrey, Méthodes et Techniques nouvelles d’observation en métallurgie physique, S.F.M.E., Paris 1972Google Scholar
  10. 10.
    S.T. Picraux, W.L. Brown, W.M. Gibson, Phys. Rev. B, 6, 1383, 1972ADSCrossRefGoogle Scholar
  11. 11.
    R.W. Bicknell, Proc. Royal Soc., A, Vol. 311, p. 75, 1969ADSCrossRefGoogle Scholar
  12. 12.
    L.T. Chadderton, F.H. Eisen, Proc. 1st Int. Conf. on Ion Implantation, pp. 445–453, 1971Google Scholar
  13. 13.
    P. Signund, J.B. Sanders, Int. Conf. on Application of Ion Beams to Semiconductor Technology, 1967Google Scholar
  14. 14.
    Y. Akasaka et al., J. Appl. Phys., Vol. 44, N° 1, January 1973CrossRefGoogle Scholar
  15. 15.
    D. Sigurd, K. Björkqvist, Radiation Effects, 1973, Vol. 17, pp. 209–220CrossRefGoogle Scholar
  16. 16.
    M. W. Thompson, Defects and radiation damage in metals, Cambridge University press — 1969Google Scholar

Copyright information

© Plenum Press, New York 1975

Authors and Affiliations

  • G. P. Pelous
    • 1
  • D. P. Lecrosnier
    • 1
  • P. Henoc
    • 1
  1. 1.Centre National d’Etudes des TélécommunicationsLannionFrance

Personalised recommendations