Generation of Knock-Ons in Solids Bombarded with Energetic Ions and Energy Partition Relations

  • T. Tsurushima
  • H. Tanoue


Theoretical considerations are given on the energy partition relation of collision sequences in solids bombarded with energetic ions, and a step by step method is proposed to calculate the statistically averaged total number of knock-on atoms. For assigning the initial energy of each knock-on atom, a basic equation governing radiation effects is modified to a simple integral form, and iterative numerical computations are carried out. The results suggest that a modification factor ξ for the Kinchin-Pease formula ((total knock-ons)=ξ·E n /2Ed) comes up to about 0.6, which is theoretically acceptable as a consequence employing a realistic (Thomas-Fermi) interaction potential. Approximations for reducing the computational burden and the accuracy of those results are discussed. Effects of the displacement threshold energy and the electronic stopping constant on the number of knock-ons and the energy partition relations are illustrated to be compared with experimental data.


Radiation Effect Initial Energy Primary Process Ordinal Number Electronic Collision 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    G. H. Kinchin et al., Rep. Progr. Phys. 18, 1 (1955).ADSCrossRefGoogle Scholar
  2. 2.
    P. Sigmund gave a short summary for recent experiments in his paper: Appl. Phys. Lett. 14, 114 (1969).ADSCrossRefGoogle Scholar
  3. 3.
    O. S. Oen et al., Appl. Phys. Lett. 2, 83 (1963). See also the references of this paper.ADSCrossRefGoogle Scholar
  4. 4.
    M. T. Robinson, Phil. Mag. 12, 741 (1965).ADSCrossRefGoogle Scholar
  5. 5.
    D. J. Mazey et al., Phil. Mag. 12, 1145 (1968).ADSCrossRefGoogle Scholar
  6. 6.
    J. A. Davies et al., Canad. J. Phys. 45, 4053 (1967).ADSCrossRefGoogle Scholar
  7. 7.
    J. W. Mayer et al., Canad. J. Phys. 46, 663 (1968).ADSCrossRefGoogle Scholar
  8. 8.
    L. Eriksson, in Radiation Effects in Semiconductors ed. F. L. Vook, Plenum Press, New York (1968).Google Scholar
  9. 9.
    S. T. Picraux et al., Appl. Phys. Lett. 14, 7 (1969).ADSCrossRefGoogle Scholar
  10. 10.
    G. Delia Mea et al., Radiation Effects 3, 259 (1970)ADSCrossRefGoogle Scholar
  11. 10a.
    G. Delia Mea et al., Appl. Phys. Lett. 16, 382 (1970).ADSCrossRefGoogle Scholar
  12. 11.
    T. Tsurushima et al., J. Phys. Soc. Japan 31, 1695 (1971).ADSCrossRefGoogle Scholar
  13. 12.
    J. Lindhard et al., Mat. Fys. Medd. Dan. Vid. Selsk. 33 (1963).Google Scholar
  14. 13.
    P. Sigmund, Radiation Effects 1, 15 (1969).ADSCrossRefGoogle Scholar
  15. 14.
    B. L. Crowder et al., Radiation Effects 6, 87 (1970).CrossRefGoogle Scholar
  16. 15.
    For example, P. Sigmund discusses on this problem in ref. [2].Google Scholar
  17. 16.
    D. K. Brice, in Ion Implantation in Semiconductors and Other Materials ed. B. L. Crowder, Plenum Press, New York (1973).Google Scholar
  18. 17.
    H. Flicker et al., Phys. Rev. 128, 2557 (1962).ADSCrossRefGoogle Scholar
  19. 17a.
    See also J. E. Westmoreland et al., Radiation Effects 5, 245 (1970).ADSCrossRefGoogle Scholar
  20. 18.
    A. R. Sattler, Phys. Rev. 138, A1815 (1965).ADSCrossRefGoogle Scholar
  21. 19.
    F. H. Eisen et al., Int. Conf. Atomic Collision Phenomena in Solids, University of Sussex, (1969).Google Scholar

Copyright information

© Plenum Press, New York 1975

Authors and Affiliations

  • T. Tsurushima
    • 1
  • H. Tanoue
    • 1
  1. 1.Electrotechnical LaboratoryTanashi, TokyoJapan

Personalised recommendations