Transport of Ion Deposited Energy by Recoiling Target Atoms

  • David K. Brice


A previous method for directly calculating the spatial distribution of energy deposition into damage or ionization for ions implanted into solid targets is extended to account for the energy transport by recoiling target atoms. The new calculations extend the applicability of the method to lower incident ion energies. Good agreement is obtained between experiment and theory using the improved procedure.


Energy Deposition Atomic Process Lower Energy Limit Spatial Moment Damage Energy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    D. K. Brice, Rad. Effects 6, 77 (1970).ADSCrossRefGoogle Scholar
  2. 2.
    P. Sigmund, M. T. Matthies, and D. L. Phillips, Rad. Effects 11, 39 (1971).CrossRefGoogle Scholar
  3. 3.
    K. B. Winterbon, Proceedings of the Fifth International Conf. on Particle Solid Interactions, Gatliriburg, Tenn., Sept. 23–28, 1973 (to be published).Google Scholar
  4. 4.
    D. K. Brice, Rad. Effects 11, 227 (1971).CrossRefGoogle Scholar
  5. 5.
    E. Bogh, P. Hogild, and I. Stensgaard, Proceedings of the Symposium on Radiation Damage in Reactor Materials, 77, Vienna, Austria (1969).Google Scholar
  6. 6.
    J. Bøttiger and F. H. Eisen, Thin Solid Films 19, 239 (1973).CrossRefGoogle Scholar
  7. 7.
    K. B. Winterbon, Rad. Effects 13, 215 (1972).CrossRefGoogle Scholar
  8. 8.
    J. Lindhard, M. Scharff, and H. E. Schiøtt, Kgl. Danske Viden-skab. Selskab, Mat.-Fys. Medd. 33, No. 14 (1963).Google Scholar

Copyright information

© Plenum Press, New York 1975

Authors and Affiliations

  • David K. Brice
    • 1
  1. 1.Sandia LaboratoriesAlbuquerqueUSA

Personalised recommendations