The Influence of Heavy Ion Bombardment on the Superconducting Transition Temperature of Thin Films

  • G. Linker
  • O. Meyer


Thin layers of the transition metals vanadium, niobium and tantalum have been bombarded with Ne+ ions. Energies and fluences were chosen such that the ions penetrated the layers and that equal amounts of energy lost in nuclear collisions were deposited in the different layers. A strong decrease of the superconducting transition temperature TC after bombardment has been observed and similar relative changes ΔTC/TC occured in V, Nb and Ta. These changes are assigned to the disorder produced on the paths of the penetrating ions. An enhanced decrease in TC was induced in the A-15 compound Nb3Ge by He+ ion irradiation.


Quartz Substrate Superconducting Transition Temperature Nuclear Collision Projected Range Fast Neutron Fluences 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. (1).
    Cullen, G. W. 1968 Proc. Summer Study on Superconducting Devices and Accelerators, Brookhaven National Laboratory, p. 437Google Scholar
  2. (2).
    Tsypkin, S. I., Chudnova, R. S., Soviet Physics-Solid State, 13 (1972), 2588Google Scholar
  3. (3).
    Ischenko, G., Mayer, H., Voit, H., Besslein, B., Haindl, E., Z. Physik 256 (1972), 176ADSCrossRefGoogle Scholar
  4. (4).
    Crozat, P., Adde, R., Chaumont, J., Bernas, H., Zenatti, D., Int. Conf. Appl. Ion Beams Metals, Albuquerque N. M., 1973, Oct. 2–4Google Scholar
  5. (5).
    Meyer, O., Mann, H., Phrilingos, E., Int. Conf. Appl. Ion Beams Metals, Albuquerque N. M., 1973, Oct. 2–4Google Scholar
  6. (6).
    Kübier, G., Diplomarbeit, Karlsruhe 1973Google Scholar
  7. (7).
    Schweitzer, D. G., Parkin, D. M., Appl. Phys. Lett., 24 (1974), 333ADSCrossRefGoogle Scholar
  8. (8).
    Crow, J. E., Strongin, M., Thompson, R. S., Kammerer, O. F., Phys. Lett., 30 A (1969), 161ADSGoogle Scholar
  9. (9).
    Linker, G., Meyer, O., Gettings, M., Thin Solid Films, 19 1973, (1973), 177ADSCrossRefGoogle Scholar
  10. (10).
    Lindhard, J., Scharff, M., Schiott, H. E., Mat.-Fys. Medd. 33. (1963), Nr. 14Google Scholar
  11. (11).
    Schiott, H. E., Mat.-Fys. Medd. 35 (1966), Nr. 9Google Scholar
  12. (12).
    Winterbon, K. B., AECL — 3194, Nov. 1968Google Scholar
  13. (13).
    Johnson, W. S., Gibbons, J. F., LSS Projected Range Statistics in Semiconductors, Stanford, Calif., 1970Google Scholar
  14. (14).
    Kulcinski, G. L., Laidler, J. J., Doran, D. G., Rad. Eff. 7 (1971), 195CrossRefGoogle Scholar
  15. (15).
    Kernohan, R. H., Sekula, S. T., J. Appl. Phys., 38 (1967), 4904ADSCrossRefGoogle Scholar
  16. (16).
    Meyer, O., Mann, H., Linker, G., Appl. Phys. Lett. 20 (1972), 259ADSCrossRefGoogle Scholar
  17. (17).
    DeSorbo, W., Phys. Rev., 132 (1963), 107ADSCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1975

Authors and Affiliations

  • G. Linker
    • 1
  • O. Meyer
    • 1
  1. 1.Institut für Angewandte KernphysikKernforschungszentrum KarlsruheGermany

Personalised recommendations