Flame Retardance of Rubbers

  • T. H. RogersJr.
  • R. E. Fruzzetti


According to American Society for Testing and Materials (ASTM) defini tion(1) rubber is “a material that is capable of recovering from large deformations quickly and forcibly, and can be, or already is, modified to a state in which it is essentially insoluble (but can swell) in boiling solvent, such as benzene, methyl ethyl ketone, and ethanol—toluene azeotrope. A rubber in its modified state, free of diluents, retracts within one minute to less than 1.5 times its original length after being stretched at room temperature (18 to 29°C) to twice its length and held for one minute before release.” This definition includes not only the more common types of rubbers such as styrene—butadiene, natural, neoprene, and the like, but flexible poly urethanes and some of the flexible plastics. In this chapter these latter two categories are not included because they are handled in other parts of the book.


Flame Retardancy Natural Rubber Limit Oxygen Index Smoke Density Flammability Test 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    ASTM, 1971 Annual Book of Standards; Rubber, Carbon Black, Gaskets; Part 28: D-1566.Google Scholar
  2. 2.
    T. H. Rogers, Encyclopedia of Chem. Technology ,Vol. 17, 2d ed., Wiley-Interscience (1968).Google Scholar
  3. 3.
    A. K. Sircar and T. G. Lamond, Rubber Chem. Tech. 45(1) 329–345, 1972.CrossRefGoogle Scholar
  4. 4.
    D. J. Rasbash, Smoke and toxic products produced at fires, Trans. J. Plast. Inst. # 2, 55–61, Jan. 1967.Google Scholar
  5. 5.
    S. Straus et al., J. Res. Nat’l. Bur. Std. 42, 499 (1949).Google Scholar
  6. 6.
    C. J. Hilado and W. Patten, An evaluation of safety standard no. 302, J. Cell. Plast. (Sept/Oct 1971).Google Scholar
  7. Bureau of Mines, Title 30, Chap. 1, Sub E, Part 34.10.Google Scholar
  8. 8.
    J. L. Isaacs, The oxygen flammability test, J. Fire Flam. 1, 43 (1970).Google Scholar
  9. 9.
    The Los Angeles Fire Department, Operation School Burning ,No. 2, NFPA, Boston (1961).Google Scholar
  10. 10.
    J. Autian, Toxicological aspects of flammability and combustion of polymeric materials, J. Fire Flam. 1, 239 (1970).Google Scholar
  11. 11.
    K. C. Hecker, R. E. Fruzzetti, and E. A. Sinclair, paper delivered at Rubber Division ACS, Boston, April 27, Rubber Age ,April 1973, p. 25.Google Scholar
  12. 12.
    F. J. Rarig and A. J. Bartosic, Special Technical Presentation, No. 422, ASTM, (1967).Google Scholar
  13. 13.
    A Method of Measuring Smoke Density, National Fire Prevention Association, Boston, Mass. (Jan. 1964).Google Scholar
  14. 14.
    A. A. Loehr and P. F. Levy, Measurement of Smoke Density by TGA/Photometric Analysis, American Laboratory (Jan. 1972).Google Scholar
  15. 15.
    J. R. Gaskill, Smoke development in polymers during pyrolysis or combustion, J. Fire Flam. 1, 183 (July 1970).Google Scholar
  16. 16.
    L. G. Lmhof, Evaluation of New Materials for Flame Retardant Applications, Regional Technical Conf SPE Oct. 14, 1971, Newark Section, p. 7.Google Scholar
  17. 17.
    V. A. Pattison and Hindersinn; Kirk-Othmer Encyclopedia of Chemical Technology ,Vol. 7, p. 1 Wiley-Interscience, New York (1967).Google Scholar
  18. 18.
    J. J. Pitts, Antimony-halogen synergistic reactions in fire retardants, J. Fire Flam. 3, 51 (1972).Google Scholar
  19. 19.
    J. W. Lyons, Mechanisms of fire retardation with Phosphorus compounds, J. Fire Flam. 1, 302 (Oct 1970).Google Scholar
  20. J. K. Jacques, Trans. J. Plast. Inst. 1–67 (Eng).Google Scholar
  21. 21.
    E. G. Cockbain, T. D. Pendle, E. C. Pole and D. T. Turner, Proc. Rubber Technol. Conf ,4th, London, 1962.Google Scholar
  22. 22.
    S. Straus and S. L. Madorsky, J. Res. Natl. Bur. Std. 61, 77 (1958).Google Scholar
  23. 23.
    L. A. Wood, in Synthetic Rubber ,(G. S. Whitby, ed.) Wiley, New York (1954).Google Scholar
  24. Dover Technical Application Data Bull. 535 (April 1968).Google Scholar
  25. 25.
    R. S. Nelson, R. S. Jessup and D. E. Roberts, J. Res. Natl. Bur. Std. 48, 206 (1952).Google Scholar
  26. 26.
    T. P. Dolezal et al., Rubber Age 104 (2), 37 (1972).Google Scholar
  27. 27.
    H. Rosen et al., J. Appl. Polym. Sci. 13(8), 1721–1728 (1968).CrossRefGoogle Scholar
  28. 28.
    S. L. Madorsky, Thermal Decomposition of Organic Polymers ,Wiley-Intersciene Pub lishers, New York (1964).Google Scholar
  29. 29.
    G. S. Parks and J. R. Mosley, J. Chem. Phys. 17, 691 (1949).Google Scholar
  30. 30.
    R. T. Morrisey, Rubber Chem. Tech. 44(4), 1025–1042 (1971).CrossRefGoogle Scholar
  31. 31.
    G. S. Skinner and J. H. McNeal, Ind. Eng. Chem. 40, 2303–2308.Google Scholar
  32. 32.
    R. N. Conklin, Rubber News 2(6), 21 (1962).Google Scholar
  33. 33.
    I. T. Gridunov et al., Khim. I. Khim. Tekhnol. 5(3), 821 (1962).Google Scholar
  34. 34.
    M. V. Polemkina and L. N. Kireenkova, Kauch. i Resina 25(9), 25–27 (1966).Google Scholar
  35. 35.
    C. E. Mc-Cormack, Rubber Age ,Flame retardant compositions of neoprene and hypalon. pp. 27–36 (June 1972).Google Scholar
  36. 36.
    L. A. Wall, J. Res. Natl. Bur. Std. 41, 315 (1948).Google Scholar
  37. 37.
    F. J. Asti and A. L. O’Meara, paper delivered at Div. Rubber Chemistry, ACS (April 1968).Google Scholar
  38. R. E. Fruzzetti, unpublished data.Google Scholar
  39. 39.
    J. C. Caprini, Society for the Advancement of Material and Processing Engineering # 7 (1964).Google Scholar
  40. 40.
    Anon., Tough silicones, Chem. Week 96(24), 76 (1965).Google Scholar
  41. Germ. Patent 1,221,010 (1966).Google Scholar
  42. 42.
    T. L. Laur and L. B. Guy, Rubber Age ,(Dec. 1970).Google Scholar
  43. 43.
    Anon., Fire resistant silicone rubber foam, Mater. Des. Eng. 62(1), 5 (1965).Google Scholar
  44. 44.
    H. J. Lanning, Rubber Plast. Age 37, 227–232 (1956).Google Scholar
  45. 45.
    D. A. Smith, Kautsch. Gummi Kunstst. 19, 477 (1966).Google Scholar
  46. 46.
    D. C. Miles, Rubber Plast. Weekly 141, 536 (1961).Google Scholar
  47. 47.
    L. A. Wall and S. Straus, Pyrolysis of fluorocarbon polymers, J. Res. Natl. Bur. Std. 65A, 227 (1961).Google Scholar
  48. 48.
    R. R. Hindersinn and G. Wagner, in Encyclopedia of Polymer Science and Technology ,Vol. 7, pp. 1–64 Wiley-Interscience, New York (1967).Google Scholar
  49. 49.
    N. B. Levine, Appl. Polym. Sym. 11 ,pp. 135–156 (1959) (Eng).Google Scholar

Copyright information

© Plenum Press, New York 1975

Authors and Affiliations

  • T. H. RogersJr.
    • 1
  • R. E. Fruzzetti
    • 1
  1. 1.Research DivisionGoodyear Tire & Rubber CompanyAkronUSA

Personalised recommendations