The Catalyzed Reduction of Nitric Oxide by Carbon Monoxide Using Soluble Rhodium Complexes

  • Carol D. Meyer
  • Joseph Reed
  • Richard Eisenberg


The reduction of nitric oxide by carbon monoxide to yield CO2 and N2O is of obvious environmental importance. However, despite its favorable thermodynamics,2 reaction (1) does not proceed at an appreciable rate in the absence of catalyst.


Nitric Oxide Catalyst System Phosphine Oxide Phosphine Ligand Group Viii Metal 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Alfred P, Sloan Foundation Fellow, 1972–74.Google Scholar
  2. 2.
    ∆H298o = −91.3 Kcal/mole;Google Scholar
  3. ∆G298o = −78.2 Kcal/mole.Google Scholar
  4. 3. a.
    C. W. Quinlan, V. C. Okay, and J. R. Kittrell, Ind. Eng. Chem. Process Des. Develop., 12, 359 (1973);CrossRefGoogle Scholar
  5. b.
    J. H. Voorhoeve, J. P. Remeika, and D. W. Johnson, Jr., Science, 180, 62 (1973);CrossRefGoogle Scholar
  6. c.
    M. J, Fuller and M. E. Warwick, Chem. Comm., 57 (1974).Google Scholar
  7. 4. a.
    W. B, Hughes, Chem. Comm., 1126 (1969);Google Scholar
  8. b.
    B, R. James and G. L. Rempel, ibid., 158 (1967);Google Scholar
  9. c.
    J. Bercaw, G. Guastalla, and J, Halpern, ibid., 1594 (1971);Google Scholar
  10. d.
    D. Gwost and K. G. Caulton, Inorg. Chem., 3, 414 (1974);CrossRefGoogle Scholar
  11. e.
    M. Rossi and A. Sacco, Chem. Comm., 694 (1971);Google Scholar
  12. f.
    J, E. Bercaw, L. Goh, and J. Halpern, J. Amer, Chem. Soc., 94, 6535 (1972);Google Scholar
  13. g.
    D. Evans, G, Yagupski, and G, Wilkinson, J. Chem, Soc, (A), 2660 (1968)Google Scholar
  14. 5. a.
    J. Reed, Jr,, and R. Eisenberg, Science, 184, 568 (1974);Google Scholar
  15. b.
    C. D. Meyer and R. Eisenberg, J. Am. Chem. Soc., submitted for publication.Google Scholar
  16. 6. a.
    B. R. James and G. L. Rempel, Chem. Comm., 158 (1967);Google Scholar
  17. b.
    B. R. James and G. L. Rempel, J. Chem. Soc. (A), 78 (1969);Google Scholar
  18. c.
    B. R. James, G. L. Rempel and F. T. T. Ng, J. Chem. Soc. (A), 2454 (1969);Google Scholar
  19. d.
    J. A. Stanko, G. Petrov, and C. K. Thomas, Chem. Comm., 1100 (1969);Google Scholar
  20. e.
    D. Forster, Inorg. Chem., 8, 2556 (1969).CrossRefGoogle Scholar
  21. 7.
    B. F. G. Johnson and S. Bhaduri, Chem. Comm., 650 (1973).Google Scholar
  22. 8. a.
    B. L. Haymore and J. A. Ibers, J. Amer. Chem. Soc., 96, 3325 (1974);CrossRefGoogle Scholar
  23. b.
    B. L. Haymore and J. A. Ibers, this volume.Google Scholar
  24. 9.
    P. Legzdins, R. W. Mitchell, G. L. Rempel, J. D. Ruddick, and G. Wilkinson, J. Chem. Soc., (A), 3322 (1970).Google Scholar
  25. 10.
    Generated in MeOH by protonation of Rh2(OAc)4.2MeOH with HBF4 as described in Ref. 9.Google Scholar
  26. 11.
    J. Kiji, S. Yoshikawa and J. Furukawa, Bull. Chem. Soc. Jap., 43, 3614 (1970).CrossRefGoogle Scholar
  27. 12.
    The only exception to this observation is [Rh(CO)C1L2].Google Scholar
  28. 13.
    The N2O/CO2 ratio increases during the reaction for [Rh(NO)2L2]+.Google Scholar
  29. 14.
    B. F. G. Johnson and R. A. Walton, Spectrochimica Acta, 22, 1853 (1966).CrossRefGoogle Scholar
  30. 15.
    J. A. Osborn, F. H. Jardine, J. F. Young, and G. Wilkinson, J. Chem. Soc. (A), 1711 (1966).Google Scholar
  31. 16.
    J. Halpern, this volume.Google Scholar

Copyright information

© Plenum Press, New York 1975

Authors and Affiliations

  • Carol D. Meyer
    • 1
  • Joseph Reed
    • 1
  • Richard Eisenberg
    • 1
  1. 1.Department of ChemistryUniversity of RochesterRochesterUSA

Personalised recommendations