Polycyanovinyl Transition Metal Derivatives

  • R. B. King


An important principle in cyanocarbon chemistry1 is the analogy between the oxygen atom and the dicyanomethylene moiety in many compounds.2,3 On the basis of this analogy polycyanovinyl halides (I) correspond to acyl halides and thus should be reactive towards nucleophiles in contrast to ordinary vinyl halides, which are relatively unreactive towards nucleophiles. Such considerations suggested reactions of polycyanovinyl halides with metal carbonyl anions4 as a method for the preparation of novel polycyanovinyl transition metal derivatives.


Cyano Group Metal Carbonyl Acyl Halide Trimethyl Phosphite Terminal Carbonyl 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    E. Ciganek, W. J. Linn, and O. W. Webster, “The Chemistry of the Cyano Group”, (Z. Rappoport, Ed.), Interscience, New York, 1970: pp. 423–638.Google Scholar
  2. 2.
    K. Wallenfels, Chimia, 20, 303 (1966).Google Scholar
  3. 3.
    H. Kohler, B. Eichler, and R. Salewski, Z. anorg. allgem. Chem., 379, 183 (1970)Google Scholar
  4. 4.
    R. B. King., Accts. Chem. Research, 3, 417 (1970).CrossRefGoogle Scholar
  5. 5.
    R. B. King and M. S. Saran, J. Am. Chem. Soc., 94, 1784 (1972).CrossRefGoogle Scholar
  6. 6.
    R. B. King and M. S. Saran, J. Am. Chem. Soc., 95, 1811 (1973).CrossRefGoogle Scholar
  7. 7.
    R. B. King, J. W. Howard, Jr., and M. S. Saran, to be published.Google Scholar
  8. 8.
    J. A. Ibers et al., unpublished results.Google Scholar
  9. 9.
    F. A. Cotton, T. S. Piper, and G. Wilkinson, J. Inorg. Nucl. Chem., 1, 165 (1955); 0. S. Mills, Acta Cryst., 11, 620 (1958).Google Scholar
  10. 10.
    F. A. Cotton, Inorg. Chem., 3, 702 (1964).CrossRefGoogle Scholar
  11. 11.
    R. F. Bryan, P. T. Greene, D. S. Field, and M. J. Newlands, Chem. Comm., 1477 (1969).Google Scholar
  12. 12.
    J. G. Bullitt, F. A. Cotton, and T. J. Marks, Inorg. Chem., 11, 671 (1972).CrossRefGoogle Scholar
  13. 13.
    R. B. King and M. S. Saran, Chem. Comm., 1053 (1972).Google Scholar
  14. 14.
    R. B. King and M. S. Saran, J. Am. Chem. Soc., 95, 1817 (1973).Google Scholar
  15. 15.
    R. B. King, Advan. Chem. Ser., 62, 203 (1967).CrossRefGoogle Scholar
  16. 16.
    A. Gansow, A. R. Burke, R. B. King, and M. S. Saran, Inorg. Nucl. Chem. Lett., 10, 291 (1974).Google Scholar
  17. 17.
    L. F. Farnell, E. W. Randall, and E. Rosenberg, Chem. Comm., 1078 (1971).Google Scholar
  18. 18.
    R. M, Kirchner, J. A. Ibers, M. S. Saran, and R. B. King, J. Am. Chem, Soc., 95, 5775 (1973).CrossRefGoogle Scholar
  19. 19.
    R. B. King and M. S. Saran, to be publishedGoogle Scholar
  20. 20.
    R. D. King and M. S. Saran, paper presented at the 167th National Meeting of the American Chemical Society, Los Angeles, California April, 1974: paper INOR240 in abstracts.Google Scholar
  21. 21.
    E. 0. Fischer, K. Fichtel, and K. Ofele, Ber., 95, 249 (1962)CrossRefGoogle Scholar
  22. 21.
    T. Kruck and M. Noack, Ber., 97, 1693 (1964).CrossRefGoogle Scholar
  23. 22.
    R. B. King and K. C. Hodges, J. Am. Chem. Soc., 96, 1263 (1974).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1975

Authors and Affiliations

  • R. B. King
    • 1
  1. 1.Department of ChemistryUniversity of GeorgiaAthensUSA

Personalised recommendations