The Synthesis of Chloroplast Membranes in Pisum sativum

  • R. John Ellis


Chloroplasts are important because they contain the entire enzymic machinery for the process of photosynthesis on which life on this planet largely depends. The extensive literature on the mechanism of photosynthesis is sufficient witness to the interest of biochemists and physiologists in this process. An entirely separate thread of interest in chloroplasts can be discerned. It originated with Strasburger,1 who observed that in some algae, chloroplasts divide and are passed to the daughter cells in cell division, and was strengthened by the genetic studies of Baur2 and Correns3 on the inheritance of chloroplast defects in certain variegated plants. In some cases, defective chloroplasts were found to be inherited in a different fashion than expected from Mendelian principles. Often, the defect was inherited via the maternal line only; this result is explicable in terms of the absence of chloroplasts from the pollen tube. The concept arose that chloroplasts themselves contain genetic material controlling at least part of their development, and are thus genetically autonomous in some sense. The discovery in 1962 that chloroplasts contain both DNA4 and ribosomes5 opened the modern era in which the development of chloroplasts is regarded as being of equal interest to chloroplast function in photosynthesis.


Large Subunit Chloroplast Membrane Chloroplast Envelope Intact Chloroplast PSII Protein 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Strasburger, E. (1882), Arch. F. Mikrosk. Anat. Entw-Mech. 21:476.CrossRefGoogle Scholar
  2. 2.
    Baur, E.(1909), Z. Vererbungslehre 1:330.Google Scholar
  3. 3.
    Correns, C. (1909), Z. Vererbungslehre 1:291.Google Scholar
  4. 4.
    Ris, H. and Plaut, W. (1962),J. Cell. Biol. 13:383.PubMedCrossRefGoogle Scholar
  5. 5.
    Lyttleton, J.W. (1962), Exp. Cell Res. 26:312.PubMedCrossRefGoogle Scholar
  6. 6.
    Boulter, D., Ellis, R. J., and Yarwood, A. (1972), Biol. Rev. 47:113.CrossRefGoogle Scholar
  7. 7.
    Ellis, R. J. and Hartley, M. R. (1974), in: Nucleic Acids (K. Burton, ed.), MTP International Review of Science Series in Biochemistry, Vol. 6, Medical & Technical Publishing Co., Lancaster, and Butterworth, London, p. 323.Google Scholar
  8. 8.
    Ellis, R. J. (1969), Science (N.Y.) 163:477.CrossRefGoogle Scholar
  9. 9.
    Ellis, R. J. (1970), Planta 91:329.CrossRefGoogle Scholar
  10. 10.
    Boardman N. K., Francki, R. I. B., and Wildman, S. G. (1966), J. Mol. Biol. 17:470.PubMedCrossRefGoogle Scholar
  11. 11.
    Ingle, J. (1968), Plant Physiol. 43:1448.PubMedCrossRefGoogle Scholar
  12. 12.
    Bottomley, W., Spencer, D., Wheeler, A. M., and Whitfeld, P. R. (1971), Arch. Biochem. Biophys. 143:269.PubMedCrossRefGoogle Scholar
  13. 13.
    Surzycki, S. J. (1969), Proc. Natl. Acad. Sci. (USA) 63:1327.CrossRefGoogle Scholar
  14. 14.
    Margulies, M. M. (1964), Plant Physiol. 39:579.PubMedCrossRefGoogle Scholar
  15. 15.
    Graham, D., Hatch, M. D., Slack, C. R., and Smillie, R. M. (1970), Phytochemistry 9:521.CrossRefGoogle Scholar
  16. 16.
    Smillie, R. M., Graham, D., Dwyer, M. R., Grieve, A., and Tobin, N. F. (1967), Biochem. Biophys. Res. Commun. 28:604.PubMedCrossRefGoogle Scholar
  17. 17.
    Schiff, J. A. (1970), in: Control of Organelle Development (P. L. Miller, ed.), Symp. 24 Soc. Exptl. Biol., Cambridge University Press, Cambridge, p. 277.Google Scholar
  18. 18.
    Ellis, R. J. (1963), Nature (Lond.) 200:596.CrossRefGoogle Scholar
  19. 19.
    MacDonald, I. R., Bacon, J. S. D., Vaughan, D., and Ellis, R. J. (1966), J. Exp. Bot. 17:822.CrossRefGoogle Scholar
  20. 20.
    MacDonald, I. R. and Ellis, R. J. (1969), Nature (Lond.) 222:791.CrossRefGoogle Scholar
  21. 21.
    Ellis, R. J. and MacDonald, I. R. (1970), Plant Physiol. 46:227.PubMedCrossRefGoogle Scholar
  22. 22.
    Ellis, R. J. and Hartley, M. R. (1971), Nat. New Biol. 233:193.PubMedCrossRefGoogle Scholar
  23. 23.
    Ellis, R. J. (1973), Comment. Plant Sci. 4:29.Google Scholar
  24. 24.
    Hoober, J. K. (1970), J. Biol. Chem. 245:4327.PubMedGoogle Scholar
  25. 25.
    Eytan, G. and Ohad, I. (1970), J. Biol. Chem. 245:4297.PubMedGoogle Scholar
  26. 26.
    Eytan, G. and Ohad, I. (1972),J. Biol. Chem. 247:122.PubMedGoogle Scholar
  27. 27.
    Armstrong, J. J., and Surzycki, S. J., Moll, B., and Levine, R. P. (1971), Biochemistry 10:692.PubMedCrossRefGoogle Scholar
  28. 28.
    Machold, O. and Aurich, O. (1972), Biochim. Biophys. Acta 281:103.PubMedGoogle Scholar
  29. 29.
    Thomson, W. W. and Ellis, R. J. (1972), Pianta (Berl.) 108:89.CrossRefGoogle Scholar
  30. 30.
    Gregory, P. and Bradbeer, J. W. (1973), Planta 109:317.CrossRefGoogle Scholar
  31. 31.
    Kirk, J. T. O. and Tilney-Bassett, R. A. E. (1967), in: The Plastids, Freeman & Co., San Francisco.Google Scholar
  32. 32.
    Levine, R. P. and Goodenough, V. W. (1970), Ann. Rev. Genet. 4:397.PubMedCrossRefGoogle Scholar
  33. 33.
    Kirk, J. T.O. (1972), Sub-Cell. Biochem. 1:333.Google Scholar
  34. 34.
    Sager, R. (1972), in: Cytoplasmic Genes and Organelles, Academic Press, New York.Google Scholar
  35. 35.
    Sager, R. and Lane, D. (1972), Proc. Natl. Acad. Sci. (USA) 69:2410.CrossRefGoogle Scholar
  36. 36.
    Chan, P. and Wildman, S. G. (1972), Biochim. Biophys. Acta 277:677.PubMedGoogle Scholar
  37. 37.
    Kawashima, N. and Wildman, S. G. (1972), Biochim. Biophys. Acta 262:42.PubMedGoogle Scholar
  38. 38.
    Hermann, F. (1971), FEBS Lett. 19:267.CrossRefGoogle Scholar
  39. 39.
    Hermann, F. (1972), Exp. Cell Res. 70:452.CrossRefGoogle Scholar
  40. 40.
    Blair, G. E. and Ellis, R. J. (1973), Biochim. Biophys. Acta 319:223.PubMedGoogle Scholar
  41. 41.
    Eaglesham, A. R. J. and Ellis, R. J. (1974), Biochim. Biophys. Acta 335:396.Google Scholar
  42. 42.
    Hartley, M. R. and Ellis, R. J. (1973), Biochem. J. 134:249.PubMedGoogle Scholar
  43. 43.
    Tao, K. J. and Jagendorf, A. T. (1973), Biochim. Biophys. Acta 324:518.PubMedGoogle Scholar
  44. 44.
    Ramirez, J. M., Del Campo, F. F., and Arnon, D. I. (1968), Proc. Natl. Acad. Sci. USA 59:606.PubMedCrossRefGoogle Scholar
  45. 45.
    Tagawa, K., Tsujimoto, H. Y., and Arnon, D. I. (1963), Proc. Natl. Acad. Sci. USA 49:567.PubMedCrossRefGoogle Scholar
  46. 46.
    Ellis, R. J., Blair, G. E., and Hartley, M. R. (1974), Biochem. Soc. Symp. 38:137.Google Scholar
  47. 47.
    Margulies, M. M., Gantt, E., and Parenti, F. (1968), Plant Physiol. 43:495.PubMedCrossRefGoogle Scholar
  48. 48.
    Swanson, R. F. (1971), Nature (Lond.) 231:31.CrossRefGoogle Scholar
  49. 49.
    Parenti, F. and Margulies, M. M. (1967), Plant Physiol. 42:1179.PubMedCrossRefGoogle Scholar
  50. 50.
    Ellis, R. J. and MacDonald, I. R. (1967), Plant Physiol. 42:1297.PubMedCrossRefGoogle Scholar
  51. 51.
    Ogawa, T., Obata, F., and Shibata, K. (1966), Biochim. Biophys. Acta 112:223.PubMedCrossRefGoogle Scholar
  52. 52.
    Thornber, J. P., Gregory, R. P. F., Smith, C. A., and Bailey, J. L. (1967), Biochemistry 6:391.PubMedCrossRefGoogle Scholar
  53. 53.
    Thornber, J. P., Stewart, J. C., Hatton, M. W. C., and Bailey, J. L. (1967), Biochemistry 6:2006.PubMedCrossRefGoogle Scholar
  54. 54.
    Gregory, R. P. F., Raps, S., and Bertsch, W. (1971), Biochim. Biophys. Acta 234:330.PubMedCrossRefGoogle Scholar
  55. 55.
    Thornber, J. P. and Highkin, H. R. (1974), Eur. J. Biochem. 41:109.PubMedCrossRefGoogle Scholar
  56. 56.
    Hermann, F. and Meister, A. (1972), Photosynthetica 6:177.Google Scholar
  57. 57.
    Bennett, J. and Ellis, R. J. (1973), Trans. Biochem. Soc. 1:892.Google Scholar
  58. 58.
    Lien, S. and Racker, E. (1971), Methods in Enzymology (A. San Pietro, ed.), Vol. 23A, Academic Press, New York, p. 547.Google Scholar
  59. 59.
    Criddle, R. S., Dau, B., Kleinkopf, G. E., and Huffaker, R. C. (1970), Biochem. Biophys. Res. Commun. 41:621.PubMedCrossRefGoogle Scholar
  60. 60.
    Nelson, N. and Racker, E. (1972),J. Biol. Chem. 247:3848.PubMedGoogle Scholar
  61. 61.
    Singh, J. and Wasserman, A. R. (1971),J. Biol. Chem. 246:3532.PubMedGoogle Scholar
  62. 62.
    Boardman, N. K. (1971), Methods in Enzymology (A. San Pietro, ed.), Vol. 23A, Academic Press, New York, p. 268–270.Google Scholar
  63. 63.
    Tzagoloff, A. and Meagher, P. (1972),J. Biol. Chem. 247:594.PubMedGoogle Scholar
  64. 64.
    Kung, S. D., Thornber, J. P., and Wildman, S. G. (1972), FEBS Lett. 24:185.PubMedCrossRefGoogle Scholar
  65. 65.
    Mackender, R. O. and Leech, R. M. (1970), Nature (Lond.) 228:1347.CrossRefGoogle Scholar
  66. 66.
    Poincelot, R. P. (1973), Arch. Biochem. Biophys. 159:134.PubMedCrossRefGoogle Scholar
  67. 67.
    Joy, K. W. and Ellis, R. J. (1975), Biochim. Biophys. Acta 378:143.PubMedGoogle Scholar

Copyright information

© Plenum Press, New York 1975

Authors and Affiliations

  • R. John Ellis
    • 1
  1. 1.Department of Biological SciencesUniversity of WarwickCoventryUK

Personalised recommendations