Studies on Bacterial Membrane Biogenesis Using Glycerol Auxotrophs

  • Leonard Mindich


Proteins and lipids are the major components of biological membranes. Other amphipathic molecules such as lipopolysaccharides and sulfolipids also occur, but they are restricted to only certain types of membranes. The composition of specific membrane systems seems to be regular and constant;1 however, under conditions of morphogenetic change or development, the composition of membranes can vary. During these periods of change it has been noted in many systems that as the protein content of the membrane increases, so do the lipids at a similar rate. For example, in the case of Rhodopseudomonas spheroides, a photosynthetic bacterium, the synthesis of chlorophyll and carotenoids is induced upon lowering the partial pressure of oxygen in the medium. Concomitant with this induction of pigment synthesis is an increase in the rate of lipid synthesis as well.2 During the synthesis of the endoplasmic reticulum in hepatocytes of newborn rats, the development of new and increased enzymatic activities is accompanied by an increase in the phospholipid content of the membrane.3 The induction of thylakoid formation in mutants of Chlamydomonas has also been shown to involve the concurrent synthesis of thylakoid proteins and lipids.3


Free Fatty Acid Fatty Acid Synthesis Lipid Synthesis Glycerol Phosphate Fatty Acid Biosynthesis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Salton, M. R. J. and Freer, J. H. (1965), Biochim. Biophys. Acta 107:531.PubMedCrossRefGoogle Scholar
  2. 2.
    Lascelles, J. and Szilagyi, J. F. (1965), J. Gen. Microbiol. 38:55.PubMedGoogle Scholar
  3. 3.
    Siekevitz, P., Palade, G. E., Dallner, G., Ohad, I., and Omura, T. (1967), in: Organizational Biosynthesis (H. J. Vogel, J. O. Lampen, and V. Bryson, eds.), Academic Press, New York, p. 331.Google Scholar
  4. 4.
    Silbert, D. F. and Vagelos, P. R. (1967), Proc. Natl. Acad. Sci. USA 58:1579.PubMedCrossRefGoogle Scholar
  5. 5.
    Mindich, L. (1970), J. Mol. Biol. 49:415.PubMedCrossRefGoogle Scholar
  6. 6.
    Mindich, L. (1971), Proc. Natl. Acad. Sci. USA 68:420.PubMedCrossRefGoogle Scholar
  7. 7.
    Hsu, C. C. and Fox, C. F. (1970),J. Bacteriol. 103:410.PubMedGoogle Scholar
  8. 8.
    Cronan, J. E., Jr., Ray, T. K., and Vagelos, P. R. (1970), Proc. Natl. Acad. Sci. USA 65:737.PubMedCrossRefGoogle Scholar
  9. 9.
    Harder, M. E., Beacham, I. R., Cronan, J. E., Jr., Beacham, K., Honegger, J. L., and Silbert, D. F. (1972), Proc. Natl. Acad. Sci. USA 69:3105.PubMedCrossRefGoogle Scholar
  10. 10.
    Cronan, J. E., Jr. (1972), Nat. New Biol. 240:21.PubMedCrossRefGoogle Scholar
  11. 11.
    Hayashi, S., Koch, J. P., and Lin, E. C. C. (1964), J. Biol. Chem. 239:3098.PubMedGoogle Scholar
  12. 12.
    Kito, M. and Pizer, L. I. (1969),J. Biol. Chem. 244:3316.PubMedGoogle Scholar
  13. 13.
    Kito, M., Lubin, M., and Pizer, L. I. (1969), Biochem. Biophys. Res. Commun. 34:454.PubMedCrossRefGoogle Scholar
  14. 14.
    Archibald, A. R. and Baddiley, J. (1966), Adv. Carbohydrates Res. 21:323.Google Scholar
  15. 15.
    Lindgren, V. and Rutberg, L. (1974), J. Bacteriol. 119:431.PubMedGoogle Scholar
  16. 16.
    Cronan, J. E. and Bell, R. M. (1974),J. Bacteriol. 118:598.PubMedGoogle Scholar
  17. 17.
    Lillich, T. T. and White, D. C. (1971),J. Bacteriol. 107:790.PubMedGoogle Scholar
  18. 18.
    Ray, P. H. and White, D. C. (1972),J. Bacteriol. 109:668.PubMedGoogle Scholar
  19. 19.
    Mindich, L. (1972), J. Bacteriol. 110:96.PubMedGoogle Scholar
  20. 20.
    Willecke, K. and Mindich, L. (1971),J. Bacteriol. 106:514.PubMedGoogle Scholar
  21. 21.
    Mindich, L. (1970), J. Mol. Biol. 49:433.PubMedCrossRefGoogle Scholar
  22. 22.
    Klein, N. and Mindich, L., (manuscript in preparation).Google Scholar
  23. 23.
    Salton, M. R. J. and Freer, J. H. (1965), Biochim. Biophys. Acta 107:531.PubMedCrossRefGoogle Scholar
  24. 24.
    Sokawa, Y., Nakao, E., and Kaziro, Y. (1968), Biochem. Biophys. Res. Commun. 33:108.PubMedCrossRefGoogle Scholar
  25. 25.
    Travers, A., Kamen, R., and Cashel, M. (1970), Cold Spring Harbor Symp. Quant. Biol. 35:415.CrossRefGoogle Scholar
  26. 26.
    Polakis, S. E., Guchhait, R. B., and Lane, M. D. (1973),J. Biol. Chem. 248:7957.PubMedGoogle Scholar
  27. 27.
    Merlie, J. P. and Pizer, L. I. (1973),J. Bacteriol. 116:355.PubMedGoogle Scholar
  28. 28.
    Glenn, A. R. and Gould, A. R. (1973), Biochem. Biophys. Res. Commun. 52:356.PubMedCrossRefGoogle Scholar
  29. 29.
    Frerman, F. E. and White, D. C. (1967),J. Bacteriol. 94:1868.PubMedGoogle Scholar
  30. 30.
    Hengstenberg, W., Penberthy, W. K., Hill, K. L., and Morse, M. L. (1969),J. Bacteriol. 99:383.PubMedGoogle Scholar
  31. 31.
    Simoni, R. D., Nakazawa, T., Hays, J. B., and Roseman, S. (1973), J. Biol. Chem. 248:932.PubMedGoogle Scholar
  32. 32.
    Kaback, H. R. (1970), Ann. Rev. Biochem. 39:561.PubMedCrossRefGoogle Scholar
  33. 33.
    Fox, C. F. (1969). Proc. Natl. Acad. Sci. USA 63:850.PubMedCrossRefGoogle Scholar
  34. 34.
    Barnes, E. M., Jr. and Kaback, H. R. (1970), Proc. Natl. Acad. Sci. USA 66:1190.PubMedCrossRefGoogle Scholar
  35. 35.
    Singer, S. J. and Nicolson, G. L. (1972), Science 175:720.PubMedCrossRefGoogle Scholar
  36. 36.
    Schairer, H. U. and Overath, P. (1969), J. Mol. Biol. 44:209.PubMedCrossRefGoogle Scholar
  37. 37.
    Wilson, G., Rose, S. P., and Fox, C. F. (1970), Biochem. Biophys. Res. Commun. 38:617.PubMedCrossRefGoogle Scholar
  38. 38.
    Linden, C. D., Wright, K. L., McConnell, H. M., and Fox, C. F. (1973), Proc. Natl. Acad. Sci. USA 70:2271.PubMedCrossRefGoogle Scholar
  39. 39.
    Overath, P., Hill, F. F., and Lamnek-Hirsch, I. (1971), Nat. New Biol. 234:264.PubMedGoogle Scholar
  40. 40.
    Tsukagoshi, N. and Fox, C. F. (1973), Biochemistry 12:2822.PubMedCrossRefGoogle Scholar
  41. 41.
    Linden, C. D. and Fox, C. F. (1973),J. Supramol. Struct. 1:535.PubMedCrossRefGoogle Scholar
  42. 42.
    Fox, C. F. (1973), Abs. 166th A.C.S. Natl. Meeting, p. 1.Google Scholar
  43. 43.
    Goldberg, I., Walker, J. R., and Bloch, K. (1973), Antimicrobial Agents and Chemotherapy 3:549.PubMedGoogle Scholar
  44. 44.
    Vance, D., Goldberg, I., Mitsuhashi, O., Bloch, K., Omura, S., and Nomura, S. (1972), Biochem. Biophys. Res. Commun. 48:649.PubMedCrossRefGoogle Scholar
  45. 45.
    Pizer, L. I., Merlie, J. P., and Ponce de Leon, M. (1974), J. Biol. Chem. 249:3212.PubMedGoogle Scholar
  46. 46.
    Glaser, M., Bayer, W. H., Bell, R. M., and Vagelos, P. R. (1973), Proc. Natl. Acad. Sci. USA 70:385.PubMedCrossRefGoogle Scholar
  47. 47.
    Bell, R. M. (1974),J. Bacteriol. 117:1065.PubMedGoogle Scholar
  48. 48.
    Ray, P. H., Lillich, T. T., and White, D. C. (1972),J. Bacteriol. 112:413.PubMedGoogle Scholar
  49. 49.
    Holden, J. T. and Bunch, J. M. (1972), Biochem. Biophys. Res. Commun. 46:437.PubMedCrossRefGoogle Scholar
  50. 50.
    Helmstetter, C. E. and Pierucci, O. (1968), J. Bacteriol. 95:1627.PubMedGoogle Scholar
  51. 51.
    Smilowitz, H., Carson, J., and Robbins, P. W. (1972),J. Supramol. Struct. 1:8.PubMedCrossRefGoogle Scholar
  52. 52.
    Jacob, F. and Monod, J. (1961), Cold Spring Harbor Symp. Quant. Biol. 26:193.CrossRefGoogle Scholar
  53. 53.
    Fox, C. F. and Kennedy, E. P. (1965), Proc. Natl. Acad. Sci. USA 54:891.PubMedCrossRefGoogle Scholar
  54. 54.
    Ailhaud, G. P. and Vagelos, P. R. (1966),J. Biol. Chem. 241:3866.PubMedGoogle Scholar
  55. 55.
    Jacob, F., Brenner, S., and Cuzin, F. (1963), Cold Spring Harbor Symp. Quant. Biol. 28:329.CrossRefGoogle Scholar
  56. 56.
    Donachie, W. D. and Begg, K. J. (1970), Nature (Lond.) 227:1220.CrossRefGoogle Scholar
  57. 57.
    Fitz-James, P. (1968), in: Microbial Protoplasts, Spheroplasts and L Forms (L. B. Guze, ed.), The Williams and Wilkens Co., Baltimore, p. 124.Google Scholar
  58. 58.
    Lin, E. C. C., Hirota, Y., and Jacob, F. (1971),J. Bacteriol. 108:375.PubMedGoogle Scholar
  59. 59.
    Green, E. W. and Schaechter, M. (1972), Proc. Natl. Acad. Sci. USA 69:2312.PubMedCrossRefGoogle Scholar
  60. 60.
    Autissier, F. and Kepes, A. (1971), Biochim. Biophys. Acta 249:611.PubMedCrossRefGoogle Scholar
  61. 61.
    Wilson, G. and Fox, C. F. (1971), Biochem. Biophys. Res. Commun. 44:503.PubMedCrossRefGoogle Scholar
  62. 62.
    Mindich, L. and Dales, S. (1972),J. Cell Biol. 55:32.PubMedCrossRefGoogle Scholar
  63. 63.
    Morrison, D. C. and Morowitz, H. J. (1970),J. Mol. Biol. 49:441.PubMedCrossRefGoogle Scholar
  64. 64.
    Tsukagoshi, N., Fielding, P., and Fox, C. F. (1971), Biochem. Biophys. Res. Commun. 44:497.PubMedCrossRefGoogle Scholar
  65. 65.
    Patch, C. P. and Landman, O. E. (1971),J. Bacteriol. 107:345.PubMedGoogle Scholar
  66. 66.
    Frye, L. D. and Edidin, M. (1970),J. Cell Sci. 7:319.PubMedGoogle Scholar
  67. 67.
    Kornberg, R. D. and McConnell, H. M. (1971), Proc. Natl. Acad. Sci. USA 68:2564.PubMedCrossRefGoogle Scholar
  68. 68.
    Bretscher, M. S. (1973), Science 181:622.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1975

Authors and Affiliations

  • Leonard Mindich
    • 1
  1. 1.The Department of MicrobiologyThe Public Health Research Institute of the City of New York, Inc.New YorkUSA

Personalised recommendations