Red-Mediated Recombination in Bacteriophage Lambda

  • Franklin W. Stahl
  • Mary M. Stahl


Among unreplicated encapsidated lambda chromosomes “crossovers” are nonuniformly distributed along the chromosome (Jordan and Mesleson, 1965). They are concentrated at the ends, especially the right end (Fig. 1). Among replicated chromosomes, however, crossovers are uniformly distributed as judged from the congruity of the linkage map and the microscopically examined chromosome (Fig. 2). The explanation for this difference between replicated and unreplicated chromosomes is that recombination throughout lambda, except at the ends, is dependent on extensive DNA synthesis (Stahl et al., 1972a). The dependence of recombination on synthesis and the resulting nonuniform crossover distribution along unreplicated chromosomes is conspicuous only in the presence of the Red system, the general recombination system of the phage (Stahl et al., 1974).


Bacteriophage Lambda Rolling Circle Strand Transfer Light Peak Parental Marker 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Boon, T. and N. D. Zinder. 1969. A mechanism for genetic recombination generating one parent and one recombinant. Proc. Nat. Acad. Sci. U.S.A. 64: 573.CrossRefGoogle Scholar
  2. Cassuto, E., T. Lash, K. S. Sriprakash and C. M. Radding. 1971. Role of exonuclease and β protein of phage λ in genetic recombination, V. Recombination of λ DNA in vitro. Proc. Nat. Acad. Sci. U.S.A. 68: 1639.CrossRefGoogle Scholar
  3. Davidson, N. and W. Szybalski. 1971. Physical and chemical characteristics of lambda DNA. In (A. D. Hershey, ed.) The Bacteriophage Lambda. p. 45. Cold Spring Harbor Laboratory, Cold Spring Harbor, New York.Google Scholar
  4. Enquist, L. W. and A. Skalka. 1973. Replication of bacteriophage λ DNA dependent on the function of host and viral genes. I. Interaction of red, gam and rec. J. Mol. Biol. 75: 185.PubMedCrossRefGoogle Scholar
  5. Feiss, M. and T. Margulies. 1973. On maturation of the bacteriophage lambda chromosome. Mol. Gen. Genet. 127: 285.PubMedCrossRefGoogle Scholar
  6. Hershey, A. D. (Editor). 1971. The Bacteriophage Lambda. Cold Spring Harbor Laboratory, Cold Spring Harbor, New York.Google Scholar
  7. Jordan, E. and M. Meselson. 1965. A discrepancy between the physical and the genetic maps of bacteriophage lambda. Genetics 51: 77.PubMedGoogle Scholar
  8. Little, J. W. 1967. An exonuclease induced by bacteriophage λ. II. Nature of the enzymatic reaction. J. Biol. Chem. 242: 679.PubMedGoogle Scholar
  9. McMilin, K. D. and V. E. A. Russo. 1972. Maturation and recombination of bacteriophage lambda DNA molecules in the absence of DNA duplication. J. Mol. Biol. 68: 49.PubMedCrossRefGoogle Scholar
  10. Meselson, M. 1972. Formation of hybrid DNA by rotary diffusion during genetic recombination. J. Mol. Biol. 71: 795.PubMedCrossRefGoogle Scholar
  11. Russo, V. E. A. 1973. On the physical structure of lambda recombinant DNA. Mol. Gen. Genet. 122: 353.PubMedCrossRefGoogle Scholar
  12. Sakaki, Y., A. E. Karu, S. Linn and H. Echols. 1973. Purification and properties of the γ-protein specified by bacteriophage λ: an inhibitor of the host recBC recombination enzyme. Proc. Nat. Acad. Sci. U.S.A. 70: 2215.CrossRefGoogle Scholar
  13. Sigal, N. and B. Alberts. 1972. Genetic recombination: the nature of a crossed strand-exchange between two homologous DNA molecules. J. Mol. Biol. 71: 789.PubMedCrossRefGoogle Scholar
  14. Stahl, F. W., S. Chung, J. Crasemann, D. Faulds, J. Haemer, S. Lam, R. E. Malone, K. D. McMilin, Y. Nozu, J. Siegel, J. Strathern and M. Stahl. 1973. Recombination, replication, and maturation in phage lambda. In (C. F. Fox and W. S. Robinson, eds.) Virus Research, p. 487. Academic Press, New York.Google Scholar
  15. Stahl, F. W., K. D. McMilin, M. M. Stahl, J. M. Crasemann and S. Lam. 1974. The distribution of crossovers along unreplicated lambda bacteriophage chromosomes. Genetics submitted.Google Scholar
  16. Stahl, F. W., K. D. McMilin, M. M. Stahl, R. E. Malone, Y. Nozu and V. E. A. Russo. 1972b. A role for recombination in the production of “free-loader” lambda bacteriophage particles. J. Mol. Biol. 68: 57.CrossRefGoogle Scholar
  17. Stahl, F. W., K. D. McMilin, M. M. Stahl and Y. Nozu. 1972a. An enhancing role for DNA synthesis in formation of bacteriophage lambda recombinants. Proc. Nat. Acad. Sci. U.S.A. 69: 3598.CrossRefGoogle Scholar
  18. Stahl, F. W. and M. M. Stahl. 1974. A role for recBC nuclease in the distribution of crossovers along unreplicated chromosomes of phage A. Molec. Gen. Genet, in press.Google Scholar
  19. White, R. L. and M. S. Fox. 1974. On the molecular basis of high negative interference. Proc. Nat. Acad. Sci. U.S.A. in press.Google Scholar
  20. Wilkins, A. S. and J. Mistry. 1974. Phage lambda’s generalized recombination system — study of the intracellular DNA pool during lytic infection. Molec. Gen. Genet. in press.Google Scholar

Copyright information

© Plenum Press, New York 1974

Authors and Affiliations

  • Franklin W. Stahl
    • 1
  • Mary M. Stahl
    • 1
  1. 1.Institute of Molecular BiologyUniversity of OregonEugeneUSA

Personalised recommendations