Advertisement

Studies on Recombination in Higher Organisms

  • A. Chovnick
  • W. M. Gelbart
  • M. McCarron
  • J. Pandey

Abstract

Random-strand and half-tetrad recombination studies of rosy and maroon-like mutants have permitted us to investigate linked exchange in higher organisms. These studies involve the systematic recovery and analysis of the products of exchange events restricted to exceedingly short genetic intervals. Our observations lead us to conclude that all recombination involves a nonreciprocal transfer of information in the immediate region of the exchange event. These studies have been reported in great detail, and they have been the subject of recent review (Chovnick et al., 1971; Finnerty, 1974).

Keywords

High Organism Nucleotide Pair Xanthine Dehydrogenase Recombination Experiment Recombination Test 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Beermann, W. 1973. Chromomeres and genes. Cell Differentiation 4: 1Google Scholar
  2. Charlesworth, B. and D. Charlesworth. 1973. A study of linkage disequilibrium in populations of Drosophila melanogaster. Genetics 73: 351.PubMedGoogle Scholar
  3. Chovnick, A., G. H. Ballantyne and D. G. Holm. 1971. Studies on gene conversion and its relationship to linked exchange in Drosophila melanogaster. Genetics 69: 179.PubMedGoogle Scholar
  4. Davidson, E. H. and R. J. Britten. 1973. Organization, transcription and regulation in the animal genome. Quart. Rev. Biol. 48: 565.PubMedCrossRefGoogle Scholar
  5. Finnerty, V. 1974. Gene conversion in Drosophila. In (M. Ashburner and E. Novitski, eds.) Biology and Genetics of Drosophila, Vol. 1. London, Academic Press, in press.Google Scholar
  6. Fogel, S., D. D. Hurst and R. K. Mortimer. 1971. Gene conversion in unselected tetrads from multipoint crosses. In (G. Kimber and G. P. Rédei, eds.) Stadler Genetics Symposia, Vols. 1 and 2, pp. 89–110. University of Missouri Agriculture Experiment Station, Columbia, Mo.Google Scholar
  7. Glassman, E. and H. K. Mitchell. 1959. Mutants of D. melanogaster deficient in xanthine dehydrogenase. Genetics 44: 153.PubMedGoogle Scholar
  8. Glassman, E., T. Shinoda, H. M. Moon and J. D. Karam. 1966. In vitro complementation between non-allelic Drosophila mutants deficient in xanthine dehydrogenase. IV. Molecular weights. J. Mol. Biol. 20: 419.PubMedCrossRefGoogle Scholar
  9. Grell, E. H. 1962. The dose effect of ma-1 + and ry + on xanthine dehydrogenase activity in Drosophila melanogaster. Z. Vererbungsl. 93: 371.CrossRefGoogle Scholar
  10. Laird, C. 1973. DNA of Drosophila chromosomes. Ann. Rev. Genet. 7: 177.PubMedCrossRefGoogle Scholar
  11. Lefevre, G. Jr. 1971a. Cytological information regarding mutants listed in Lindsley and Grell 1968. Drosophila Inf. Serv. 46: 40.Google Scholar
  12. Lefevre, G., Jr. 1971b. Salivary chromosome glands and the frequency of crossing over in Drosophila melanogaster. Genetics 67: 497.Google Scholar
  13. McCarron, M., W. Gelbart and A. Chovnick. 1974. Intracistronic mapping of electrophoretic sites in Drosophila melanogaster: Fidelity of information transfer by gene conversion. Genetics, in press.Google Scholar
  14. Yen, T. T. T. and E. Glassman. 1965. Electrophoretic vaiants of xanthine dehydrogenase in Drosophila melanogaster. Genetics 52; 977.PubMedGoogle Scholar

Copyright information

© Plenum Press, New York 1974

Authors and Affiliations

  • A. Chovnick
    • 1
  • W. M. Gelbart
    • 1
  • M. McCarron
    • 1
  • J. Pandey
    • 1
  1. 1.Genetics and Cell Biology Section, Biological Sciences GroupThe University of ConnecticutStorrsUSA

Personalised recommendations