Genetic and Biochemical Studies of Recombination in Ustilago maydis

  • R. Holliday
  • W. K. Holloman
  • G. R. Banks
  • P. Unrau
  • J. E. Pugh


Genetic studies of recombination with several species of fungi have led to the accumulation of a large body of information about genetic fine structure and the relationships between reciprocal and nonreciprocal recombination. Molecular models of genetic recombination that appear to be capable of explaining most of the genetic observations have been formulated (Holliday, 1968, 1973; Whitehouse, 1969; Fincham and Holliday, 1970; Leblon and Rossignol, 1973). The models depend on the breakage and reunion of polynucleotide chains, the formation of hybrid or heteroduplex DNA, and the correction of mismatched bases. The following proteins are likely to be required for these processes: deoxyribonucleases, a DNA-binding protein (like the bacteriophage T4 gene 32 product), DNA polymerase, and polynucleotide ligase. Very little information has previously been obtained about proteins or enzymes of this type in fungi that have DNA as their substrate.


Gene Conversion Buoyant Density Deoxyribose Nucleic Acid Pancreatic DNase Alkaline Sucrose Gradient 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alberts, B. M. and L. Frey. 1970. T4 bacteriophage gene 32: a structural protein in the replication and recombination of DNA. Nature 227: 1313.PubMedCrossRefGoogle Scholar
  2. Alberts, B. M., L. Frey and H. Delius. 1972. Isolation and characterisation of gene 5 protein of filamentous bacterial viruses. J. Mol. Biol. 68: 139.PubMedCrossRefGoogle Scholar
  3. Badman, R. 1972. Deoxyribonuclease-deficient mutants of Ustilago maydis with altered recombination frequencies. Genet. Res. 20: 213.CrossRefGoogle Scholar
  4. Banks, G. R. 1973. A search in fungi for some proteins possibly involved in recombination of deoxyribonucleic acid. Biochem. Soc. Trans. 1: 245.Google Scholar
  5. Cavalieri, L. F. and B. H. Rosenberg. 1957. Studies on the structure of nucleic acids. XI. The roles of heat and acid in deoxyribonucleic acid denaturation. J. Amer. Chem. Soc. 79: 5352.CrossRefGoogle Scholar
  6. Day, P. R. and S. L. Agnostakis. 1971. Corn smut dikaryon in culture. Nature New Biol. 231: 19.PubMedCrossRefGoogle Scholar
  7. Dore, E., G. Fronteli and E. Gratton. 1972. Physico-chemical description of a condensed form of DNA. Biopolymers 11: 443.PubMedCrossRefGoogle Scholar
  8. Fincham, J. R. S. and R. Holliday. 1970. An explanation of fine structure map expansion in terms of excision repair. Molec. Gen. Genet. 109: 309.PubMedCrossRefGoogle Scholar
  9. Geiduschek, E. P. and A. Holtzer. 1958. Application of light scattering to biological systems: deoxyribonucleic acid and the muscle proteins. Advan. Biol. Med. Phys. 6: 431.Google Scholar
  10. Herrick, G. and B. Alberts. 1973. A nucleic acid helix unwinding protein from calf thymus. Fed. Proc. 32: 497 (abstract).Google Scholar
  11. Holliday, R. 1965. Radiation sensitive mutants of Ustilago maydis. Mutat. Res. 2 : 557.PubMedCrossRefGoogle Scholar
  12. Holliday, R. 1967. Altered recombination frequencies in radiation sensitive strains of Ustilago. Mutat. Res. 4: 275.PubMedCrossRefGoogle Scholar
  13. Holliday, R. 1968. Genetic recombination in fungi. In (W. J. Peacock and R. D. Brock, eds.) Replication and Recombination of Genetic Material, p. 157. Australian Academy of Science, Canberra.Google Scholar
  14. Holliday, R. 1971. Biochemical measure of the time and frequency of radiation-induced allelic recombination in Ustilago. Nature New Biol, 232: 233.PubMedGoogle Scholar
  15. Holliday, R. 1974. Molecular aspects of genetic exchange and gene conversion. Genetics in press.Google Scholar
  16. Holliday, R. 1974. The genetics of Ustilago maydis. In (R. C. King, ed.) Handbook of Genetics. Plenum Press, New York in press.Google Scholar
  17. Holloman, W. K. 1973. Studies on a nuclease from Ustilago maydis. II. Substrate specificity and mode of action of the enzyme. J. Biol. Chem. 248: 8114.PubMedGoogle Scholar
  18. Holloman, W. K. and R. Holliday. 1973. Studies on a nuclease from Ustilago maydis. I. Purification, properties, and implication in recombination of the enzyme. J. Biol. Chem. 248: 8107.PubMedGoogle Scholar
  19. Hotta, Y. and H. Stern. 1971a. A DNA-binding protein in meiotic cells of Lilium. Develop. Biol. 26: 87.CrossRefGoogle Scholar
  20. Hotta, Y. and H. Stern. 1971b. Meiotic protein in spermatocytes of mammals. Nature New Biol. 234: 83.Google Scholar
  21. Jeggo, P. A., P. Unrau, G. R. Banks and R. Holliday. 1973. A temperature sensitive DNA polymerase mutant of Ustilago maydis. Nature New Biol. 242: 14.PubMedGoogle Scholar
  22. Lang, D. 1969. Collapse of single DNA molecules in ethanol. J. Mol. Biol. 46: 209.PubMedCrossRefGoogle Scholar
  23. Leblon, G. and J. L. Rossignol. 1973. Mechanism of gene conversion in Ascobolus immersus. III. The interaction of heteroalleles in the conversion process. Molec. Gen. Genet. 122: 165.PubMedCrossRefGoogle Scholar
  24. Lerman, L. S. 1971. A transition to a compact form of DNA in polymer solutions. Proc. Nat. Acad. Sci. U.S.A. 68: 1886.CrossRefGoogle Scholar
  25. Moore, P. D. 1974a. Genetic Repair in Pyrimidine Mutants of Ustilago maydis. Ph.D. Thesis. C.N.A.A.Google Scholar
  26. Moore, P. D. 1974b. Evidence for an inducible repair mechanism in pyrimidine mutants of Ustilago maydis. Heredity in press (abstract).Google Scholar
  27. Oey, J. L. and R. Knippers. 1972. Properties of the isolated gene 5 protein of bacteriophage fd. J. Mol. Biol. 68: 125.PubMedCrossRefGoogle Scholar
  28. Petes, T. D., C. S. Newlon, B. Byer and W. L. Faugman. 1973. Yeast chromosomal DNA: size, structure and replication. Cold Spring Harbor Symp. Quant. Biol. 38: 9.CrossRefGoogle Scholar
  29. Philpot, J. St. L. and J. E. Stanier. 1957. Comparison of interphase and prophase in isolated rat liver nuclei. Nature 179: 102.PubMedCrossRefGoogle Scholar
  30. Rice, S. A. and P. Doty. 1957. The thermal denaturation of deoxy-ribose nucleic acid. J. Amer. Chem. Soc. 79: 3937.CrossRefGoogle Scholar
  31. Ris, H. and A. E. Mirsky. 1949. The state of the chromosomes in the interphase nucleus. J. Gen. Physiol. 32 : 489.PubMedCrossRefGoogle Scholar
  32. Sigal, N., H. Delius, T. Romberg, M. L. Gefter and B. A. Alberts. 1972. A DNA unwinding protein isolated from Escherichia coli: its interaction with DNA and with DNA polymerase. Proc. Nat. Acad. Sci. U.S.A. 69: 3537.CrossRefGoogle Scholar
  33. Sturtevant, J. M., S. A. Rice and E. P. Geiduschek. 1958, The stability of the helical DNA molecule in solution. Disc. Faraday Soc. 25: 138.CrossRefGoogle Scholar
  34. Thomas, C. A. and P. Doty. 1956. The mild acidic degradation of deoxyribose nucleic acid. J. Amer. Chem. Soc. 78: 1854.CrossRefGoogle Scholar
  35. Tsai, R. L. and H. Green. 1973. Studies on a mammalian cell protein (P8) with affinity for DNA in vitro. J. Mol. Biol. 73: 307.PubMedCrossRefGoogle Scholar
  36. Unrau, P. and R. Holliday. 1970. A search for temperature-sensitive mutants of Ustilago maydis blocked in DNA synthesis. Genet. Res. 15: 157.PubMedCrossRefGoogle Scholar
  37. Whitehouse, H. L. K. 1969. Towards an Understanding of the Mechanism of Heredity. 2nd ed. Arnold, London.Google Scholar

Copyright information

© Plenum Press, New York 1974

Authors and Affiliations

  • R. Holliday
    • 1
  • W. K. Holloman
    • 1
  • G. R. Banks
    • 1
  • P. Unrau
    • 1
  • J. E. Pugh
    • 1
  1. 1.National Institute for Medical ResearchMill Hill, LondonUK

Personalised recommendations