Advertisement

Uptake and Integration of Transforming DNA in Bacillus Subtilis

  • David Dubnau
  • Carol Cirigliano

Abstract

In the past decade, considerable information has accumulated concerning the molecular events that accompany the uptake and integration of transforming DNA by competent bacterial cultures. This article presents our understanding of the molecular events accompanying genetic transformation in Bacillus subtilis. The approach employed in our laboratory has been a straightforward one, involving the addition of isotopically and genetically labeled DNA to competent cells and the analysis of extracts of those cells.

Keywords

Bacillus Subtilis Deoxyribonucleic Acid Donor Segment Donor Moiety polA59 Strain 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arwert, F. and G. Venema. 1973. Evidence for a non-covalently bonded intermediate in recombination during transformation of Bacillus subtilis. In (L. J. Archer, ed.) Bacterial Transformation. p. 203–214. Academic Press, London.Google Scholar
  2. Ayad, S. R. and G. R. Barker. 1969. The integration of donor and recipient deoxyribonucleic acid during transformation of Bacillus subtilis. Biochem. J. 113: 167.PubMedGoogle Scholar
  3. Bodmer, W. F. and A. T. Ganesan. 1964. Biochemical and genetic studies of integration and recombination in Bacillus subtilis transformation. Genetics 50: 717.PubMedGoogle Scholar
  4. Brown, N. C. 1971. Inhibition of bacterial DNA replication by 6-(p-hydroxyphenylazo)-uracil: differential effect on repair and semi-conservative synthesis in Bacillus subtilis. J. Mol. Biol. 59: 1.PubMedCrossRefGoogle Scholar
  5. Cassuto, E. and C. M. Radding. 1971. Mechanism for the action of λ exonuclease in genetic recombination. Nature New Biol. 229: 13.PubMedGoogle Scholar
  6. Davidoff-Abelson, R. and D. Dubnau. 1973a. Conditions affecting the isolation from transformed cells of Bacillus subtilis of high-molecular-weight single-stranded deoxyribonucleic acid of donor origin. J. Bacteriol. 116; 146.Google Scholar
  7. Davidoff-Abelson, R. and D. Dubnau. 1973b. Kinetic analysis of the products of donor deoxyribonucleate in transformed cells of Bacillus subtilis. J. Bacteriol. 116: 154.Google Scholar
  8. Dubnau, D. and C. Cirigliano. 1972a. Fate of transforming DNA following uptake by competent Bacillus subtilis. III. Formation and properties of products isolated from transformed cells which are derived entirely from donor DNA. J. Mol. Biol. 64: 9.CrossRefGoogle Scholar
  9. Dubnau, D. and C. Cirigliano. 1972b. Fate of transforming DNA following uptake by competent Bacillus subtilis. IV. The endwise attachment and uptake of transforming DNA. J. Mol. Biol. 64: 31.CrossRefGoogle Scholar
  10. Dubnau, D. and C. Cirigliano. 1972c. Fate of transforming deoxyribonucleic acid after uptake by competent Bacillus subtilis: Size and distribution of the integrated donor segments. J. Bacteriol. 111: 488.Google Scholar
  11. Dubnau, D. and C. Cirigliano. 1973a. Fate of transforming DNA following uptake by competent Bacillus subtilis. VI. Non-covalent association of donor and recipient DNA. Mol. Gen. Genet. 120: 101.CrossRefGoogle Scholar
  12. Dubnau, D. and C. Cirigliano. 1973b. Fate of transforming deoxyribonucleic acid after uptake by competent Bacillus subtilis: Non-requirement of deoxyribonucleic acid replication for uptake and integration of transforming deoxyribonucleic acid. J. Bacteriol. 113: 1512.Google Scholar
  13. Dubnau, D. and C. Cirigliano. 1974. Genetic characterization of recombination-deficient mutants of Bacillus subtilis. J. Bacteriol. 117: 488.PubMedGoogle Scholar
  14. Dubnau, D. and R. Davidoff-Abelson. 1971. Fate of transforming DNA following uptake by competent Bacillus subtilis. I. Formation and properties of the donor-recipient complex. J. Mol. Biol. 56: 209.PubMedCrossRefGoogle Scholar
  15. Dubnau, D., R. Davidoff-Abelson, B. Scher and C. Cirigliano. 1973. Fate of transforming deoxyribonucleic acid after uptake by competent Bacillus subtilis: Phenotypic characterization of radiation-sensitive recombination-deficient mutants. J. Bacteriol. 114: 273.PubMedGoogle Scholar
  16. Erickson, R. J. and W. Braun. 1968. Apparent dependence of transformation on the stage of deoxyribonucleic acid replication of recipient cells. Bacteriol. Rev. 32: 291.PubMedGoogle Scholar
  17. Erickson, R. J. and J. C. Copeland. 1972. Structure and replication of chromosomes in competent cells of Bacillus subtili s. J. Bacteriol. 109: 1075.PubMedGoogle Scholar
  18. Erickson, R. J. and J. C. Copeland. 1973. Congression of unlinked markers and genetic mapping in the transformation of Bacillus subtilis 168. Genetics 73: 13.PubMedGoogle Scholar
  19. Gass, K. B. and N. R. Cozzarelli. 1973. Further genetic and enzymological characterization of the three Bacillus subtilis DNA polymerases. J. Biol. Chem. 248: 7688.PubMedGoogle Scholar
  20. Harris, W. J. and G. C. Barr. 1969. Some properties of DNA in competent Bacillus subtilis. J. Mol. Biol. 39: 245.PubMedCrossRefGoogle Scholar
  21. Haseltine, F. P. and M. S. Fox. 1971. Bacterial inactivation of transforming deoxyribonucleate. J. Bacteriol. 107: 889.PubMedGoogle Scholar
  22. Holliday, R. 1968. Genetic recombination in fungi. In (W. J. Peacock and R. D. Brock, eds.) Replication and Recombination of Genetic Material, p. 157–174. Australian Acad. Sci., Canberra.Google Scholar
  23. Lacks, S. 1962. Molecular fate of DNA in genetic transformation of Pneumococcus. J. Mol. Biol. 5: 119.PubMedCrossRefGoogle Scholar
  24. Lacks, S. and B. Greenberg. 1973. Competence for deoxyribonucleic acid uptake and deoxyribonuclease action external to cells in the genetic transformation of Diplococcus pneumoniae. J. Bacteriol. 114: 152.PubMedGoogle Scholar
  25. Laipis, P. J. and A. T. Ganesan. 1972. A deoxyribonucleic acid polymerase I-deficient mutant of Bacillus subtilis. J. Biol. Chem. 247: 5867.PubMedGoogle Scholar
  26. Levin, B. C. and O. E. Landman. 1973. DNA synthesis inhibition by 6-(p-hydroxyphenylazo)-uracil in relation to uptake and integration of transforming DNA in Bacillus subtilis. In (L. J. Archer, ed.) Bacterial Transformation. p. 217–240. Academic Press, London.Google Scholar
  27. Morrison, D. A. and W. R. Guild. 1973. Breakage prior to entry of donor DNA in Pneumococcus transformation. Biochim. Biophys. Acta 299: 545.PubMedGoogle Scholar
  28. Okazaki, T. and A. Kornberg. 1964. Enzymatic synthesis of deoxyribonucleic acid. XV. Purification and properties of a polymerase from Bacillus subtilis. J. Biol. Chem. 239: 259.PubMedGoogle Scholar
  29. Pène, J. J. and W. R. Romig. 1964. On the mechanism of genetic recombination in transforming Bacillus subtilis. J. Mol. Biol. 9: 236.PubMedCrossRefGoogle Scholar
  30. Piechowska, M. and M. S. Fox. 1971. Fate of transforming deoxyri-bonucleate in Bacillus subtilis. J. Bacteriol. 108: 680.PubMedGoogle Scholar
  31. Scher, B. and D. Dubnau. 1973. A manganese-stimulated endonuclease from Bacillus subtilis. Biochem. Biophys. Res. Commun. 55: 595.PubMedCrossRefGoogle Scholar
  32. Schlegel, R. A., R. E. Pyeritz and C. A. Thomas, Jr. 1972. Analysis of DNA bearing single-chained terminals by BNC chromatography. Anal. Biochem. 50: 558.PubMedCrossRefGoogle Scholar
  33. Searashi, T. and B. Strauss. 1965. Relation of the repair of damage induced by a monofunctional alkylating agent to the repair of damage induced by ultraviolet light in Bacillus subtilis. Biochem. Biophys. Res. Commun. 20: 680.PubMedCrossRefGoogle Scholar
  34. Sobell, H. M. 1972. Molecular mechanism for genetic recombination. Proc. Nat. Acad. Sci. U.S.A. 69: 2483.CrossRefGoogle Scholar
  35. Tomizawa, J.-I., N. Anraku and Y. Iwama. 1966. Molecular mechanisms of genetic recombination in bacteriophage. VI. A mutant defective in the joining of DNA molecules. J. Mol. Biol. 21: 247.PubMedCrossRefGoogle Scholar
  36. Venema, G., R. H. Pritchard and T. Venema-Sehroder. 1965. Fate of transforming deoxyribonucleic acid in Bacillus subtilis. J. Bacteriol. 89: 1250.PubMedGoogle Scholar
  37. Williams, G. L. and D. M. Green. 1972. Early extracellular events in infection of competent Bacillus subtilis by DNA of bacteriophage SP82G. Proc. Nat. Acad. Sci. U.S.A. 69: 1545.CrossRefGoogle Scholar
  38. Worcel, A. and E. Burgi. 1972. On the structure of the folded chromosome of Escherichia coli. J. Mol. Biol. 71: 127.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1974

Authors and Affiliations

  • David Dubnau
    • 1
  • Carol Cirigliano
    • 1
  1. 1.Department of MicrobiologyThe Public Health Research Institute of the City of New York, Inc.New YorkUSA

Personalised recommendations