Transformation and Transduction of Escherichia coli: The Nature of Recombinants Formed by Rec, RecF, and λ Red

  • Wilfried Wackernagel
  • Charles M. Radding


Genetic transformation of Escherichia coli is possible when two requirements are met: (1) the recipient strain lacks exonuclease V, due to a mutation in recB or recC, but has recovered proficiency for recombination by virtue of a second suppressing mutation, sbcA or sbcB; and (2) the uptake of DNA is facilitated by treatment of the recipient cells with CaCl2 (Oishi and Cosloy, 1972; Wackernagel, 1973). However, compared with other bacteria, the frequency of transformation of E. coli is low, usually about one cell in 106. In an effort to improve this frequency we turned to a source of DNA that is both uniform and enriched for specific markers, namely the specialized transducing variants of phage λ. Our initial observations on transformation by λ gal bio DNA and our efforts to vary its genetic control suggested that certain questions might be approached more readily by studying transduction. We report here observations on transformation and transduction mediated by the RecBC and RecF pathways of E. coli (for review see Clark, 1973) and the Red system of phage λ (for review see Radding, 1973). These experiments have provided an opportunity to examine the properties of recombination mediated by the λ Red system without the possible complications introduced by maturation of phage particles.


Recipient Cell Suppress Mutation Helper Phage COLI Transformation Transduce Phage 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adhya, S., P. Cleary and A. Campbell. 1968. A deletion analysis of prophage lambda and adjacent genetic regions. Proc. Nat. Acad. Sci. U.S.A. 61: 956.CrossRefGoogle Scholar
  2. Clark, A. J. 1973. Recombination deficient mutants of E. coli and other bacteria. Ann. Rev. Genet. 7: 67.PubMedCrossRefGoogle Scholar
  3. Enquist, L. W. and A. Skalka. 1973. Replication of bacteriophage λ DNA dependent on the function of host and viral genes I. The “fec-” defect. J. Mol. Biol. 75: 185.PubMedCrossRefGoogle Scholar
  4. Feiss, M., S. Adhya and D. L. Court. 1972. Isolation of plaque-forming, galactose-transducing strains of phage lambda. Genetics 71: 189.PubMedGoogle Scholar
  5. Freifelder, D., L. Chud and E. E. Levine. 1974. Requirement for maturation of Escherichia coli bacteriophage lambda. J. Mol. Biol. 83: 503.PubMedCrossRefGoogle Scholar
  6. Herman, R. K. 1968. Identification of recombinant chromosomes and F-merogenotes in merodiploids of Escherichia coti. J. Bacteriol. 96: 173.PubMedGoogle Scholar
  7. Hill, C. W., D. Schiffer and P. Berg. 1969. Transduction of meroploidy: Induced duplication of recipient genes. J. Bacteriol. 99: 274.PubMedGoogle Scholar
  8. Howard-Flanders, P. and R. P. Boyce. 1966. DNA repair and genetic recombination: Studies on mutants of Escherichia coli defective in these processes. Radiat. Res. 6 (suppl.): 156.CrossRefGoogle Scholar
  9. Kushner, S. R., H. Nagishi, A. Templin and A. J. Clark. 1971. Genetic recombination in Escherichia coli: The role of exonuclease I. Proc. Nat. Acad. Sci. U.S.A. 68: 824.CrossRefGoogle Scholar
  10. Manly, K. F., E. R. Signer and C. M. Radding. 1969. Nonessential functions of bacteriophage λ. Virology 32: 177.CrossRefGoogle Scholar
  11. Meselson, M. 1967. Reciprocal recombination in prophage lambda. J. Cell Physiol. 22: 113.CrossRefGoogle Scholar
  12. Oishi, M. and S. D. Cosloy. 1972. The genetic and biochemical basis of the transformability of Escherichia coli K12. Biochem. Biophys. Res. Commun. 49: 1568.CrossRefGoogle Scholar
  13. Oishi, M. and S. D. Cosloy. 1974. Specialized transformation in Escherichia coli K12. Nature 248: 112.PubMedCrossRefGoogle Scholar
  14. Parkinson, J. S. 1971. Deletion mutants of bacteriophage λ: II. Genetic properties of att-defective mutants. J. Mol. Biol. 56: 385.PubMedCrossRefGoogle Scholar
  15. Radding, C. M. 1973. Molecular mechanisms in recombination. Ann. Rev. Genet. 7: 87.PubMedCrossRefGoogle Scholar
  16. Shulman, M. and M. Gottesman. 1973. Attachment site mutants of bacteriophage lambda. J. Mol. Biol. 81: 461.PubMedCrossRefGoogle Scholar
  17. Stahl, F. W., K. D. McMilin, M. M. Stahl, R. E. Malone, Y. Nozu and V. E. A. Russo. 1972. A role for recombination in the production of “free-loader” lambda bacteriophage particles. J. Mol. Biol. 68: 57.PubMedCrossRefGoogle Scholar
  18. Wackernagel, W. 1973. Genetic transformation in E. coli: The inhibitory role of the veoBC DNAse. Biochem. Biophys. Res. Commun. 51: 306.PubMedCrossRefGoogle Scholar
  19. Weil, J. 1969. Reciprocal and non-reciprocal recombination in bacteriophage λ. J. Mol. Biol. 43: 351.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1974

Authors and Affiliations

  • Wilfried Wackernagel
    • 1
  • Charles M. Radding
    • 2
  1. 1.Abteilung Biologie, Lehrstuhl Biologie der MikroorganismenRuhr-Universitat463 BochumWest Germany
  2. 2.Departments of Medicine and Molecular Biophysics and BiochemistryYale UniversityNew RavenUSA

Personalised recommendations