Advertisement

Electronic Energy Transfer

  • Dwaine O. Cowan
  • Ronald L. Drisko

Abstract

Intramolecular and intermolecular electronic energy transfers from singlet and triplet states are of great interest both theoretically and experimentally because of their importance in radiation chemistry, molecular spectroscopy, photochemistry, and photobiology. A number of reviews concerning the experimental and theoretical aspects of energy transfer have appeared recently.(1–6) In this chapter we will discuss the theories for electronic energy transfer and the role that energy transfer plays in organic photochemistry.

Keywords

Energy Transfer Triplet State Optically Detect Magnetic Resonance Vibronic Band Phosphorescence Intensity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. A. Lamola, Electronic Energy Transfer in Solution: Theory and Applications, in Techniques of Organic Chemistry, XIV, P. A. Leermakers and A. Weissberger, eds., Interscience, New York (1969), pp. 17–132.Google Scholar
  2. 2.
    F. Wilkinson, in Advances in Photochemistry, Vol. 3, Wiley Interscience, New York (1964), p. 241.CrossRefGoogle Scholar
  3. 3.
    R. G. Bennett and R. Kellogg, Mechanisms and Rates of Radiationless Energy Transfer, in Progress in Reaction Kinetics, Vol. 4, G. Porter, ed., Pergamon Press, London (1966).Google Scholar
  4. 4.
    Th. Förster, Delocalized Excitation and Excitation Transfer, in Modern Quantum Chemistry, Vol. 3, O. Sinnanoğlu, ed., Academic Press (1965).Google Scholar
  5. 5.
    R. S. Knox, Theory of Excitons, Academic Press, New York (1959).Google Scholar
  6. 6.
    F. Wilkinson, in Luminescence in Chemistry, E. J. Bowen, ed., D. Van Nostrand, London (1968), pp. 155–182.Google Scholar
  7. 7.
    G. W. Robinson and R. P. Frosch, J. Chem. Phys. 37, 1962 (1962); 38, 1187 (1963).CrossRefGoogle Scholar
  8. 8.
    B. R. Henry and M. Kasha, Ann. Rev. Phys. Chem. 19, 161 (1968).CrossRefGoogle Scholar
  9. 9.
    M. Bixon and J. Jortner, J. Chem. Phys. 48, 715 (1968).CrossRefGoogle Scholar
  10. 10.
    J. Jortner and R. S. Berry, J. Chem. Phys. 48, 2757 (1968).CrossRefGoogle Scholar
  11. 11.
    D. P. Chock, J. Jortner, and S. A. Rice, J. Chem. Phys. 49, 610 (1968).CrossRefGoogle Scholar
  12. 12.
    J. Jortner, S. A. Rice, and R. M. Hochstrasser, in Advances in Photochemistry, Vol. 7, Wiley Interscience, New York (1969), p. 149.CrossRefGoogle Scholar
  13. 13.
    K. F. Freed and J. Jortner, J. Chem. Phys. 52, 6272 (1970).CrossRefGoogle Scholar
  14. 14.
    S. H. Lin, J. Chem. Phys. 53, 3766 (1970).CrossRefGoogle Scholar
  15. 15.
    A. Nitzan and J. Jortner, J. Chem. Phys. 55, 1355 (1971).CrossRefGoogle Scholar
  16. 16.
    W. Siebrand, J. Chem. Phys. 55, 5843 (1971).CrossRefGoogle Scholar
  17. 17. (a)
    M. A. El-Sayed, Acc. Chem. Res. 4, 23 (1971)CrossRefGoogle Scholar
  18. (b).
    M. A. El-Sayed, Pure Appl. Chem. 24, 475 (1970).CrossRefGoogle Scholar
  19. 18.
    G. N. Lewis and M. Kasha, J. Amer. Chem. Soc. 66, 2100 (1944).CrossRefGoogle Scholar
  20. 19.
    M. A. El-Sayed, in Proceedings, International Conference on Molecular Luminescence, Loyola University, E. Lim, ed., Benjamin, New York (1969).Google Scholar
  21. 20.
    D. S. Tinti and M. A. El-Sayed, J. Chem. Phys. 54, 2529 (1971).CrossRefGoogle Scholar
  22. 21.
    M. A. El-Sayed, J. Chem. Phys. 54, 680 (1971).CrossRefGoogle Scholar
  23. 22.
    M. A. El-Sayed, D. S. Owens, and D. S. Tinti, Chem. Phys. Lett. 6, 395 (1970).CrossRefGoogle Scholar
  24. 23.
    M. Sharnoff, J. Chem. Phys. 46, 3263 (1967)CrossRefGoogle Scholar
  25. A. Kwiram, Chem. Phys. Lett. 1, 272 (1967)CrossRefGoogle Scholar
  26. J. Schmidt, I. A. M. Hesselmann, M. S. de Groot, and J. H. van der Waals, Chem. Phys. Lett. 1, 434 (1967)CrossRefGoogle Scholar
  27. J. Schmidt and J. H. van der Waals, Chem. Phys. Lett. 2, 640 (1968).CrossRefGoogle Scholar
  28. 24.
    M. A. El-Sayed, J. Chem. Phys. 52, 6438 (1970).CrossRefGoogle Scholar
  29. 25.
    D. S. Tinti, M. A. El-Sayed, A. H. Maki, and C. B. Harris, Chem. Phys. Lett. 3, 343 (1969)CrossRefGoogle Scholar
  30. M. A. El-Sayed, D. S. Tinti, and D. Owens, Chem. Phys. Lett. 3, 339 (1969).CrossRefGoogle Scholar
  31. 26.
    M. A. El-Sayed, Acc. Chem. Res. 1, 8 (1968).CrossRefGoogle Scholar
  32. 27.
    M. A. El-Sayed, D. S. Tinti, and E. M. Yee, J. Chem. Phys. 51, 5721 (1969).CrossRefGoogle Scholar
  33. 28.
    Th. Förster, Ann. Physik. 2, 55 (1948).CrossRefGoogle Scholar
  34. 29.
    Th. Förster, Disc. Faraday Soc. 27, 7 (1959).CrossRefGoogle Scholar
  35. 30.
    Th. Förster, in Comparative Effects of Radiation, M. Burton, J. S. Kirby-Smith, and J. L. Magee, eds., Wiley, New York (1960).Google Scholar
  36. 31.
    D. L. Dexter, J. Chem. Phys. 21, 836 (1953).CrossRefGoogle Scholar
  37. 32.
    E. Wigner, Nachr. Ges. Wiss. Gottingen Math. Physik. Kl., 375 (1927).Google Scholar
  38. 33.
    E. G. McRae and M. Kasha, in Physical Processes in Radiation Biology, L. Augenstein, R. Mason, and B. Rosenberg, eds., Academic Press (1964), pp. 23-42.Google Scholar
  39. 34.
    M. Kasha, Rev. Mod. Phys. 31, 162 (1959).CrossRefGoogle Scholar
  40. 35.
    R. M. Hochstrasser and M. Kasha, Photochem. Photobiol. 3, 317 (1964).CrossRefGoogle Scholar
  41. 36.
    P. Avakian and R. E. Merrifield, Mol. Cryst. 5, 37 (1968).CrossRefGoogle Scholar
  42. 37.
    W. T. Simpson and D. L. Peterson, J. Chem. Phys. 26, 588 (1957).CrossRefGoogle Scholar
  43. 38.
    A. S. Davydov, Theory of Molecular Excitons, McGraw-Hill, New York (1962).Google Scholar
  44. 39.
    W. Ware, J. Phys. Chem. 66, 455 (1962).CrossRefGoogle Scholar
  45. 40.
    W. Ware, J. Amer. Chem. Soc. 83, 4374 (1961).CrossRefGoogle Scholar
  46. 41.
    R. G. Bennett, J. Chem. Phys. 41, 3037 (1964).CrossRefGoogle Scholar
  47. 42.
    O. Schnepp and M. Levy, J. Amer. Chem. Soc. 84, 172 (1962).CrossRefGoogle Scholar
  48. 43.
    S. A. Latt, H. T. Cheung, and E. R. Blout, J. Amer. Chem. Soc. 87, 995 (1965).CrossRefGoogle Scholar
  49. 44.
    D. Rauh, T. R. Evans, and P. A. Leermakers, J. Amer. Chem. Soc. 90, 6897 (1968).CrossRefGoogle Scholar
  50. 45.
    L. Stryer and R. P. Haugland, Proc. Nat. Acad. Sci. U.S. 58, 719 (1967).CrossRefGoogle Scholar
  51. 46.
    R. H. Conrad and L. Brand, Biochemistry 7, 777 (1968).CrossRefGoogle Scholar
  52. 47.
    J. T. Dubois and M. Cox, J. Chem. Phys. 38, 2536 (1963).CrossRefGoogle Scholar
  53. 48.
    J. T. Dubois and R. L. Van Hemert, J. Chem. Phys. 40, 923 (1964).CrossRefGoogle Scholar
  54. 49.
    F. Wilkinson and J. T. Dubois, J. Chem. Phys. 39, 377 (1963).CrossRefGoogle Scholar
  55. 50.
    A. N. Terenin and V. Ermolaev, Dokl. Akad. Nauk SSSR 85, 547 (1952).Google Scholar
  56. 51.
    A. N. Terenin and V. Ermolaev, Trans. Faraday Soc. 52, 1042 (1956).CrossRefGoogle Scholar
  57. 52.
    F. Perrin, Compt. Rend. 178, 1978 (1924).Google Scholar
  58. 53.
    W. R. Ware, Survey Prog. Chem. 4, 205 (1968).Google Scholar
  59. 54.
    H. L. J. Bäckstrom and K. Sandros, Acta Chem. Scand. 12, 823 (1958).CrossRefGoogle Scholar
  60. 55.
    H. L. J. Bäckstrom and K. Sandros, Acta Chem. Scand. 18, 48 (1960).CrossRefGoogle Scholar
  61. 56.
    G. Porter and F. Wilkinson, Proc. Roy. Soc. A 264, 1 (1961).CrossRefGoogle Scholar
  62. 57.
    W. G. Herkstroeter and G. S. Hammond, J. Amer. Chem. Soc. 88, 4769 (1966).CrossRefGoogle Scholar
  63. 58.
    W. G. Herkstroeter, L. B. Jones, and G. S. Hammond, J. Amer. Chem. Soc. 88, 4777 (1966).CrossRefGoogle Scholar
  64. 59.
    W. M. Moore, G. S. Hammond, and R. P. Foss, J. Amer. Chem. Soc. 83, 2789 (1961).CrossRefGoogle Scholar
  65. 60.
    G. S. Hammond, J. Saltiel, A. A. Lamola, N. J. Turro, J.S. Bradshaw, D. O. Cowan, R. C. Counsell, V. Vogt, and C. Dalton, J. Amer. Chem. Soc. 86, 3197 (1964).CrossRefGoogle Scholar
  66. 61.
    J. Saltiel and G. S. Hammond, J. Amer. Chem. Soc. 85, 2515 (1963).CrossRefGoogle Scholar
  67. 62.
    G. S. Hammond and J. Saltiel, J. Amer. Chem. Soc. 85, 2516 (1963).CrossRefGoogle Scholar
  68. 63.
    G. S. Hammond and J. Saltiel, J. Amer. Chem. Soc. 84, 4983 (1962).CrossRefGoogle Scholar
  69. 64.
    G. S. Hammond, N. J. Turro, and P. A. Leermakers, J. Phys. Chem. 66, 1144 (1962).CrossRefGoogle Scholar
  70. 65.
    R. S. H. Liu, N. J. Turro, and G. S. Hammond, J. Amer. Chem. Soc. 87, 3406 (1965).CrossRefGoogle Scholar
  71. 66.
    G. S. Hammond, N. J. Turro, and A. Fischer, J. Amer. Chem. Soc. 83, 4674 (1961).CrossRefGoogle Scholar
  72. 67.
    N. J. Turro and G. S. Hammond, J. Amer. Chem. Soc. 84, 2841 (1962).CrossRefGoogle Scholar
  73. 68.
    G. S. Hammond, N. J. Turro, and R. S. H. Lui, J. Org. Chem. 28, 3297 (1963).CrossRefGoogle Scholar
  74. 69.
    K. R. Kopecky, G. S. Hammond, and P. A. Leermakers, J. Amer. Chem. Soc. 84, 1015 (1962).CrossRefGoogle Scholar
  75. 70.
    D. O. Cowan, M. M. Couch, K. R. Kopecky, and G. S. Hammond, J. Org. Chem. 29, 1922 (1964).CrossRefGoogle Scholar
  76. 71.
    G. S. Hammond, P. A. Leermakers, and N. J. Turro, J. Amer. Chem. Soc. 83, 2395 (1961).CrossRefGoogle Scholar
  77. 72.
    G. S. Hammond, C. A. Stout, and A. A. Lamola, J. Amer. Chem. Soc. 86, 3103 (1964).CrossRefGoogle Scholar
  78. 73.
    R. S. H. Liu, J. Amer. Chem. Soc. 86, 1892 (1964).CrossRefGoogle Scholar
  79. 74.
    G. O. Schenck and R. Steinmetz, Chem. Ber. 96, 520 (1963).CrossRefGoogle Scholar
  80. 75.
    G. S. Hammond, N. J. Turro, and A. Fischer, J. Amer. Chem. Soc. 83, 4674 (1961).CrossRefGoogle Scholar
  81. 76.
    H. E. Zimmerman and G. L. Grunewald, J. Amer. Chem. Soc. 88, 183 (1966).CrossRefGoogle Scholar
  82. 77.
    K. Gollnick and G. O. Schenck, Pure Appl. Chem. 9, 507 (1964).CrossRefGoogle Scholar
  83. 78.
    G. O. Schenck and R. Steinmetz, Tetrahedron Lett., 1 (1960).Google Scholar
  84. 79.
    P. A. Leermakers, G. W. Byers, A. A. Lamola, and G. S. Hammond, J. Amer. Chem. Soc. 85, 2670 (1963).CrossRefGoogle Scholar
  85. 80.
    A. A. Lamola, P. A. Leermakers, G. W. Byers, and G. S. Hammond, J. Amer. Chem. Soc. 87, 2322 (1965).CrossRefGoogle Scholar
  86. 81.
    D. E. Breen and R. A. Keller, J. Amer. Chem. Soc. 90, 1935 (1968).CrossRefGoogle Scholar
  87. 82.
    R. A. Keller, J. Amer. Chem. Soc. 90, 1940 (1968).CrossRefGoogle Scholar
  88. 83.
    R. A. Keller and L. J. Dolby, J. Amer. Chem. Soc. 91, 1293 (1969).CrossRefGoogle Scholar
  89. 84.
    N. Filipescu, J. DeMember, and F. L. Minn, J. Amer. Chem. Soc. 91, 4169 (1969).CrossRefGoogle Scholar
  90. 85.
    N. Filipescu and J. R. Bunting, J. Chem. Soc. B, 1498 (1970).Google Scholar
  91. 86.
    J. R. DeMember and N. Filipescu, J. Amer. Chem. Soc. 90, 6425 (1968).CrossRefGoogle Scholar
  92. 87.
    A. A. Lamola, J. Amer. Chem. Soc. 91, 4786 (1969).CrossRefGoogle Scholar
  93. 88.
    D. O. Cowan and A. A. Baum, J. Amer. Chem. Soc. 92, 2153 (1970).CrossRefGoogle Scholar
  94. 89.
    D. O. Cowan and A. A. Baum, J. Amer. Chem. Soc. 93, 1153 (1971).CrossRefGoogle Scholar
  95. 90.
    H. Morrison and R. Peiffer, J. Amer. Chem. Soc. 90, 3428 (1968).CrossRefGoogle Scholar
  96. 91.
    H. Morrison, J. Amer. Chem. Soc. 87, 932 (1965).CrossRefGoogle Scholar
  97. 92.
    S. R. Kurowsky and H. Morrison, J. Amer. Chem. Soc. 94, 507 (1972), and reference cited therein.CrossRefGoogle Scholar
  98. 93.
    F. C. DeSchryver and J. Put, Ind. Chim. Belg. 37, 1107 (1972).Google Scholar
  99. 94.
    W. Cooper, Chem. Phys. Lett. 7, 73 (1970).CrossRefGoogle Scholar
  100. 95.
    M. Kasha, Rev. Mod. Phys. 31, 162 (1959).CrossRefGoogle Scholar
  101. 96.
    M. Trlifaj, Czech. J. Phys. 6, 533 (1956); 8, 510 (1958).CrossRefGoogle Scholar
  102. 97.
    S. A. Rice and J. Jortner, in Physics and Chemistry of the Organic Solid State, Vol. 3, D. Fox, M. M. Labes, and A. Weissberger, eds., Interscience, New York (1967).Google Scholar
  103. 98.
    G. C. Nieman and G. W. Robinson, J. Chem. Phys. 39, 1298 (1963).CrossRefGoogle Scholar
  104. 99.
    J. B. Birks, Photophysics of Aromatic Molecules, Interscience, New York (1970).Google Scholar
  105. 100.
    L. M. Stephenson, D. G. Whitten, G. F. Vesley, and G. S. Hammond, J. Amer. Chem. Soc. 88, 3665 (1966).CrossRefGoogle Scholar
  106. 101.
    L. M. Stephenson and G. S. Hammond, Pure Appl. Chem. 16, 125 (1968).CrossRefGoogle Scholar
  107. 102.
    G. N. Taylor and G. S. Hammond, J. Amer. Chem. Soc. 94, 3684, 3687 (1972).CrossRefGoogle Scholar
  108. 103. (a)
    S. L. Murov, R. S. Cole, and G. S. Hammond, J. Amer. Chem. Soc. 90, 2957 (1968)CrossRefGoogle Scholar
  109. (b).
    S. L. Murov and G. S. Hammond, J. Phys. Chem. 72, 3797 (1968).CrossRefGoogle Scholar
  110. 104.
    B. S. Solomon, C. Steel, and A. Weller, Chem. Comm., 927 (1969).Google Scholar
  111. 105.
    S. L. Murov, L. Yu, and L. P. Giering, J. Amer. Chem. Soc. 95, 4329 (1973).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1976

Authors and Affiliations

  • Dwaine O. Cowan
    • 1
  • Ronald L. Drisko
    • 2
  1. 1.The Johns Hopkins UniversityBaltimoreUSA
  2. 2.Essex Community CollegeBaltimoreUSA

Personalised recommendations