Advertisement

The Photochemistry of Simple Carbonyl Compounds: Type I Cleavage and Oxetane Formation

  • Dwaine O. Cowan
  • Ronald L. Drisko

Abstract

In Chapter 3 we discussed two photochemical reactions characteristic of simple carbonyl compounds, namely type II cleavage and photoreduction. We saw that photoreduction appears to arise only from carbonyl triplet states, whereas type II cleavage often arises from both the excited singlet and triplet states. Each process was found to occur from discrete biradical intermediates. In this chapter we will discuss two other reactions observed in the photochemistry of carbonyls, type I cleavage and oxetane formation.

Keywords

Quantum Yield Triplet State Cleavage Reaction Chemically Induce Dynamic Nuclear Polarization Alkenal Formation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G. Quinkert, Angew. Chem. Int. Ed. Eng. 4, 211 (1965).Google Scholar
  2. 2.
    P. Yates, Pure Appl. Chem. 16, 93 (1968).Google Scholar
  3. 3.
    R. L. Alumbaugh, G. O. Pritchard, and B. Rickborn, J. Phys. Chem. 69, 3225 (1965).Google Scholar
  4. 4.
    P. J. Wagner and R. W. Spoerke, J. Amer. Chem. Soc. 91, 4437 (1969).Google Scholar
  5. 5.
    P. Dunion and C. N. Trumbore, J. Amer. Chem. Soc. 87, 4211 (1965).Google Scholar
  6. 6.
    R. Simonaitis, G. W. Co well, and J. N. Pitts, Jr., Tetrahedron Lett. 3751 (1967).Google Scholar
  7. 7.
    P. J. Wagner and I. Kochevar, J. Amer. Chem. Soc. 90, 2232 (1968)Google Scholar
  8. P. J. Wagner, J. Amer. Chem. Soc. 88, 5672 (1966).Google Scholar
  9. 8.
    J. C. Dalton, K. Dawes, N. J. Turro, D. S. Weiss, J. A. Barltrop, and J. D. Coyle, J. Amer. Chem. Soc. 93, 7213 (1971); J. D. Coyle, J. Chem. Soc. B, 1736 (1971).Google Scholar
  10. 9.
    J. C. Dalton and N. J. Turro, Ann. Rev. Phys. Chem. 21, 499 (1970).Google Scholar
  11. 10.
    J. C. Dalton, D. M. Pond, D. S. Weiss, F. D. Lewis, and N. J. Turro, J. Amer. Chem. Soc. 92, 2564 (1970).Google Scholar
  12. 11.
    D. S. Weiss, N. J. Turro, and J. C. Dalton, Mol. Photochem. 2, 91 (1970).Google Scholar
  13. 12.
    J. A. Barltrop and J. D. Coyle, Chem. Comm., 1081 (1969).Google Scholar
  14. 13.
    N. C. Yang and E. D. Feit, J. Amer. Chem. Soc. 90, 504 (1968).Google Scholar
  15. 14.
    N. C. Yang, E. D. Feit, M. H. Hui, N. J. Turro, and J. C. Dalton, J. Amer. Chem. Soc. 92, 6974 (1970).Google Scholar
  16. 15.
    N. C. Yang and R. H.-K. Chen, J. Amer. Chem. Soc. 93, 530 (1971).Google Scholar
  17. 16.
    J. Franck and E. Rabinowitsch, Trans. Faraday Soc. 30, 120 (1934).Google Scholar
  18. 17.
    A. A. Lamola and G. S. Hammond, J. Chem. Phys. 43, 2129 (1965).Google Scholar
  19. 18.
    H. L. Goering, D. I. Delyea, and D. W. Larsen, J. Amer. Chem. Soc. 78, 348 (1956)Google Scholar
  20. F. R. Jensen, L. H. Gale, and J. E. Rodgers, J. Amer. Chem. Soc. 90, 5793 (1968)Google Scholar
  21. J. G. Traynham, A. G. Lane, and N. S. Bhacca, J. Org. Chem. 34, 1302 (1969).Google Scholar
  22. 19.
    A. Ross, P. A. S. Smith, and A. S. Drieding, J. Org. Chem. 20, 905 (1955).Google Scholar
  23. 20.
    C. H. Bamford and R. G. W. Norrish, J. Chem. Soc., 1504 (1935)Google Scholar
  24. R. G. W. Norrish and R. P. Wayne, Proc. Roy. Soc. (London) A 284, 1 (1965)Google Scholar
  25. J. N. Pitts, Jr., L. D. Hess, E. J. Baum, E. A. Schuck, and J. K. S. Wan, Photochem. Photobiol. 4, 305 (1965).Google Scholar
  26. 21.
    F. E. Blacet and A. Miller, J. Amer. Chem. Soc. 79, 4327 (1957); M. C. Flowers and H. M. Frey, J. Chem. Soc., 2758, (1960)Google Scholar
  27. S. W. Benson and G. B. Kistiakowsky J. Amer. Chem. Soc. 64, 80 (1942).Google Scholar
  28. 22.
    N. J. Turro and R. M. Southam, Tetrahedron Lett., 545 (1967).Google Scholar
  29. 23. (a)
    N. J. Turro, P. A. Leermakers, H. R. Wilson, D. C. Neckers, G. W. Byers, and G. F. Vesley, J. Amer. Chem. Soc. 87, 2613 (1965)Google Scholar
  30. (b).
    N. J. Turro, W. B. Hammond, and P. A. Leermakers, J. Amer. Chem. Soc. 87, 2774 (1965).Google Scholar
  31. 24. (a)
    H. G. Richey, N. J. Richey, and D. C. Claggett, J. Amer. Chem. Soc. 87, 1144 (1965)Google Scholar
  32. (b).
    I. Haller and R. Srinivasan, Can. J. Chem. 43, 3165 (1965).Google Scholar
  33. 25.
    N. J. Turro and D. M. McDaniel, J. Amer. Chem. Soc. 92, 5727 (1970).Google Scholar
  34. 26.
    D. R. Morton, Columbia University; results cited in N. J. Turro, J. C. Dalton, K. Dawes, G. Farrington, R. Hautala, D. Morton, M. Niemczyk, and N. Schore, Acc Chem. Res. 5, 92 (1972).Google Scholar
  35. 27.
    P. Yates, Pure Appl. Chem. 16, 93 (1968); P. Yates and L. Kilmurry, Tetrahedron Lett., 1739 (1964); J. Amer. Chem. Soc. 88, 1563 (1966).Google Scholar
  36. 28.
    H. U. Hostettler, Helv. Chim. Acta 49, 2417 (1966).Google Scholar
  37. 29.
    G. Quinkert, G. Cimbollek, and G. Buhr, Tetrahedron Lett., 4573 (1966).Google Scholar
  38. 30.
    H. A. Staab and J. Ipaktschi, Tetrahedron Lett., 583 (1966).Google Scholar
  39. 31.
    R. F. C. Brown and R. K. Jolly, Tetrahedron Lett., 169 (1966).Google Scholar
  40. 32.
    A. G. Brook and J. B. Pierce, cited in: P. Yates, Pure Appl. Chem. 16, 93 (1968).Google Scholar
  41. 33.
    R. Srinivasan, J. Amer. Chem. Soc. 81, 2604 (1959).Google Scholar
  42. 34.
    W. C. Agosta and D. K. Herron, J. Amer. Chem. Soc. 90, 7025 (1968).Google Scholar
  43. 35.
    H. Takeshita and Y. Fukazawa, Tetrahedron Lett., 3395 (1968).Google Scholar
  44. 36.
    G. Quinkert, Angew. Chem. 77, 229 (1965).Google Scholar
  45. 37.
    G. Quinkert, B. Wegemund, and E. Blanke, Tetrahedron Lett., 221 (1962).Google Scholar
  46. 38.
    W. Koch, M. Carson, and R. W. Kierstead, J. Org. Chem. 33, 1272 (1968).Google Scholar
  47. 39.
    R. C. Cookson, R. P. Ghandi, and R. M. Southam, J. Chem. Soc. C, 2494 (1968).Google Scholar
  48. 40.
    W. C. Agosta, A. B. Smith, A. S. Kende, R. G. Eilerman, and J. Renham, Tetrahedron Lett., 4517 (1969).Google Scholar
  49. 41.
    L. A. Paquette and R. F. Eizember, J. Amer. Chem. Soc. 84, 6205 (1967).Google Scholar
  50. 42.
    J. K. Crandell, J. P. Arrington, and J. Hen, J. Amer. Chem. Soc. 89, 6208 (1967).Google Scholar
  51. 43.
    L. A. Paquette and G. V. Meehan, J. Org. Chem. 34, 450 (1969).Google Scholar
  52. 44.
    J. R. Williams and H. Ziffer, Chem. Comm. 194, 469 (1967).Google Scholar
  53. 45.
    J. R. Williams and H. Ziffer, Tetrahedron 24, 6725 (1968).Google Scholar
  54. 46.
    C. P. Tenney, D. W. Boykin, and R. E. Lutz, J. Amer. Chem. Soc. 88, 1835 (1966).Google Scholar
  55. 47.
    R. L. Cargill and T. Y. King, Tetrahedron Lett., 409 (1970).Google Scholar
  56. 48.
    H. Nazaki, Z. Yamaguti, T. Okada, R. Noyori, and M. Kawanisi, Tetrahedron 23, 3993 (1967).Google Scholar
  57. 49.
    P. Y. Johnson and G. A. Berchtold, J. Org. Chem. 35, 584 (1970).Google Scholar
  58. 50.
    A. Padwa and A. Battisti, J. Amer. Chem. Soc. 94, 521 (1972).Google Scholar
  59. 51.
    J. W. Wheeler and R. H. Eastman, J. Amer. Chem. Soc. 81, 236 (1959).Google Scholar
  60. 52.
    L. Barber, O. L. Chapman, and J. D. Lassila, J. Amer. Chem. Soc. 90, 5933 (1968).Google Scholar
  61. 53.
    D. A. Plank, Ph.D. Thesis, Purdue University (1966).Google Scholar
  62. 54. (a)
    C. D. Gutsche and B. A. M. Oude-Alink, J. Amer. Chem. Soc. 90, 5855 (1968)Google Scholar
  63. (b).
    O. L. Chapman and C. L. Mclntosh, J. Amer. Chem. Soc. 91, 4309 (1969).Google Scholar
  64. 55.
    A. O. Pederson, S.-O. Lawesson, P. D. Klemmensen, and J. Kolc, Tetrahedron 26, 1157(1970).Google Scholar
  65. 56.
    O. L. Chapman and C. L. Mclntosh, J. Amer. Chem. Soc. 92, 7001 (1970).Google Scholar
  66. 57.
    G. Quinkert, K. Opitz, W. W. Wiersdorff, and J. Weinlich, Tetrahedron Lett., 1863 (1963)Google Scholar
  67. G. Quinkert, Pure Appl. Chem. 9, 607 (1964).Google Scholar
  68. 58.
    R. C. Cookson, M. J. Nye, and G. Subrahamanyam, Proc. Chem. Soc., 144 (1964).Google Scholar
  69. 59.
    R. H. Eastman, J. E. Starr, R. St. Martin, and M. K. Sakata, J. Org. Chem., 28, 2162 (1963).Google Scholar
  70. 60.
    C. D. Gutsche and C. W. Armbruster, Tetrahedron Lett., 1297 (1962); C. D. Gutsche and J. W. Baum, Tetrahedron Lett., 2301 (1965).Google Scholar
  71. 61.
    J. E. Starr and R. H. Eastman, J. Org. Chem. 31, 1393 (1966).Google Scholar
  72. 62.
    K. Mislow and A. J. Gordon, J. Amer. Chem. Soc. 85, 3521 (1963).Google Scholar
  73. 63.
    W. K. Robbins and R. H. Eastman, J. Amer. Chem. Soc. 92, 6076 (1970).Google Scholar
  74. 64.
    W. K. Robbins and R. H. Eastman, J. Amer. Chem. Soc. 92, 6077 (1970).Google Scholar
  75. 65.
    P. S. Engel, J. Amer. Chem. Soc. 92, 6074 (1970).Google Scholar
  76. 66.
    L. M. Stephenson and G. S. Hammond, Pure Appl. Chem. 16, 125 (1968)Google Scholar
  77. D. I. Schuster and D. J. Patel, J. Amer. Chem. Soc. 90, 5145 (1968).Google Scholar
  78. 67.
    R. Kaptein and L. J. Oosterhoff, Chem. Phys. Lett. 4, 195, 214 (1969)Google Scholar
  79. F. L. Closs and A. D. Trifunac, J. Amer. Chem. Soc. 92, 2183 (1970)Google Scholar
  80. R. E. Merrifield, J. Chem. Phys. 48, 4318 (1968)Google Scholar
  81. R. C. Johnson and R. E. Merrifield, Phys. Rev. 31, 896 (1970).Google Scholar
  82. 68.
    M. Tomkiewicz, A. Groen, and M. Cocivera, Chem. Phys. Lett. 10, 39 (1971).Google Scholar
  83. 69.
    E. Baggiolini, H. P. Hamlow, and K. Schaffner, J. Amer. Chem. Soc. 92, 4906 (1970)Google Scholar
  84. J. Hill, J. Iriarte, K. Schaffner, and O. Jeger, Helv. 49, 292 (1966)Google Scholar
  85. K. Schaffner, Chimia 19, 575 (1965).Google Scholar
  86. 70.
    H. Küntzel, H. Wolf, and K. Schaffner, Helv. 54, 868 (1971).Google Scholar
  87. 71.
    R. S. Neale and E. Gross, J. Amer. Chem. Soc. 89, 6579 (1967).Google Scholar
  88. 72.
    J. N. Pitts and I. Norman, J. Amer. Chem. Soc. 76, 4815 (1954).Google Scholar
  89. 73.
    W. G. Dauben and G. W. Shaffer, Tetrahedron Lett., 4415 (1967).Google Scholar
  90. 74.
    R. S. Carson, W. Cocker, S. M. Evans, and P. V. R. Shannon, Chem. Comm., 726 (1969).Google Scholar
  91. 75.
    R. Beugelmans, Bull. Soc. Chim. Fr., 244 (1967).Google Scholar
  92. 76.
    R. E. K. Winter and R. F. Landauer, Tetrahedron Lett., 2345 (1967).Google Scholar
  93. 77.
    H. E. Zimmerman, K. G. Hancock, and G. C. Licke, J. Amer. Chem. Soc. 90, 4892 (1968).Google Scholar
  94. 78.
    H. E. Zimmerman and J. W. Wilson, J. Amer. Chem. Soc. 86, 4036 (1964).Google Scholar
  95. 79.
    T. Norin, Acta Chim. Scand. 19, 1289 (1965)Google Scholar
  96. W. G. Dauben and E. J. Deviny, J. Org. Chem. 31, 3794 (1966)Google Scholar
  97. H. E. Zimmerman, R. D. Rieke, and J. R. Scheffer, J. Amer. Chem. Soc. 89, 2033 (1967)Google Scholar
  98. H. E. Zimmerman and R. L. Morse, J. Amer. Chem. Soc. 90, 954 (1968).Google Scholar
  99. 80.
    H. E. Zimmerman and T. W. Flechtner, J. Amer. Chetn. Soc. 92, 6931 (1970).Google Scholar
  100. 81.
    H. E. Zimmerman and C. M. Moore, J. Amer. Chem. Soc. 92, 2023 (1970).Google Scholar
  101. 82.
    H. E. Zimmerman, S. S. Hixson, and E. F. McBride, J. Amer. Chem. Soc. 92, 2000 (1970).Google Scholar
  102. 83.
    H. E. Zimmerman, B. R. Cowley, C. Y. Tseng, and J. W. Wilson, J. Amer. Chem. Soc. 86, 947 (1964).Google Scholar
  103. 84.
    H. Wehrli, C. Lehrmann, K. Schaffner, and O. Jeger, Helv. 47, 1336 (1964)Google Scholar
  104. O. Jeger, K. Schaffner, and H. Wehrli, Pure Appl. Chem. 9, 555 (1964)Google Scholar
  105. C. K. Johnson, B. Dominy, and W. Reusch, J. Amer. Chem. Soc. 85, 3894 (1963).Google Scholar
  106. 85.
    H. E. Zimmerman, in Abstract of Papers, 17th National Organic Chemistry Symposium, American Chemical Society, Bloomington, Indiana (June 1961), p. 31.Google Scholar
  107. 86.
    R. Hoffmann and W. N. Lipscomb, J. Chem. Phys. 36, 2179, 3487 (1962)Google Scholar
  108. R. Hoffmann, J. Chem. Phys. 39, 1397 (1963); R. Hoffmann, Tetrahedron Lett., 3819 (1965).Google Scholar
  109. 87.
    R. Gleiter and D. O. Cowan, unpublished calculations.Google Scholar
  110. 88.
    R. S. Mulliken, J. Chem. Phys. 23, 1833, 1841, 2338, 2343 (1955).Google Scholar
  111. 89.
    A. Y. Meyer, B. Muel, and M. Kasha, Chem. Comm., 401 (1972).Google Scholar
  112. 90.
    E. Paterno and C. Chieffi, Gazz. Chim. Ital. 39, 341 (1909).Google Scholar
  113. 91.
    G. Buchi, C. G. Inman, and E. S. Lipinsky, J. Amer. Chem. Soc. 76, 4327 (1954).Google Scholar
  114. 92.
    D. R. Arnold, R. L. Hinman, and A. H. Glick, work cited in D. R. Arnold, Adv. Photochem. 6, 301 (1968).Google Scholar
  115. 93.
    N. C. Yang, R. Loeschen, and D. Mitchell, J. Amer. Chem. Soc. 89, 5465 (1967).Google Scholar
  116. 94.
    N. C. Yang, N. Nussim, M. J. Jorgenson, and S. Murov, Tetrahedron Lett., 3657 (1964); N. C. Yang, Pure Appl. Chem. 9, 591 (1964).Google Scholar
  117. 95.
    G. S. Hammond and P. A. Leermakers, J. Amer. Chem. Soc. 84, 207 (1962).Google Scholar
  118. 96.
    V. L. Ermolaev and N. A. Terenin, J. Chim. Phys. 55, 698 (1958).Google Scholar
  119. 97.
    D. S. McClure, J. Chem. Phys. 17, 905 (1949).Google Scholar
  120. 98.
    W. A. Bryce and C. H. J. Wells, Can. J. Chem. 41, 2722 (1963).Google Scholar
  121. 99.
    R. R. Sauers and A. D. Rousseau, J. Amer. Chem. Soc. 94, 1776 (1972).Google Scholar
  122. 100.
    D. R. Arnold, R. L. Hinman, and A. H. Glick, Tetrahedron Lett., 1425 (1964).Google Scholar
  123. 101.
    D. Sharf and F. Korte, Tetrahedron Lett., 821 (1963).Google Scholar
  124. 102.
    H. Kristinsson and G. W. Griffin, J. Amer. Chem. Soc. 88, 1579 (1966).Google Scholar
  125. 103.
    I. P. Stepanov, O. A. Ikonopistseva, and T. I. Temnikova, J. Org. Chem. USSR 2, 2216 (1966).Google Scholar
  126. 104.
    W. G. Herkstroeter and G. S. Hammond, J. Amer. Chem. Soc. 88, 4769 (1966)Google Scholar
  127. A. Kuboyama, Bull. Chem. Soc. Japan 35, 295 (1962).Google Scholar
  128. 105.
    J. A. Barltrop and B. Hesp, J. Chem. Soc., 5182 (1965).Google Scholar
  129. 106.
    G. Buchi, J. T. Kofron, E. Koller, and D. Roesthal, J. Amer. Chem. Soc. 78, 876 (1956).Google Scholar
  130. 107.
    Y. Shigemitsu, Y. Odaira, and S. Tsutsumi, Tetrahedron Lett., 55 (1967).Google Scholar
  131. 108.
    T. Miyamoto, Y. Shigemitsu, and Y. Odaira, Chem. Comm., 1410 (1969).Google Scholar
  132. 109.
    G. L. Lange and M. Bosch, Tetrahedron Lett., 315 (1971).Google Scholar
  133. 110.
    D. A. Arnold and A. H. Glick, Chem. Comm., 813 (1966).Google Scholar
  134. 111.
    H. Gotthardt, R. Steinmetz, and G. S. Hammond, J. Org. Chem. 33, 2774 (1968); Chem. Comm., 480 (1967).Google Scholar
  135. 112.
    G. Tsuchiahashi, M. Yamauchi, and M. Kukuyama, Tetrahedron Lett., 1971 (1967); A. Ohno, Y. Ohnishi, M. Fukuyama, and G. Tsuchihashi, J. Amer. Chem. Soc. 90, 7038 (1968).Google Scholar
  136. 113.
    A. Ohno, Y. Ohnishi, and G. Tsuchihashi, Tetrahedron Lett., 283 (1969).Google Scholar
  137. 114.
    A. Ohno, Y. Ohnishi, and G. Tsuchihashi, Tetrahedron Lett., 161 (1969).Google Scholar
  138. 115.
    E. T. Kaiser and T. F. Wulfers, J. Amer. Chem. Soc. 86, 1897 (1964).Google Scholar
  139. 116. (a)
    S. H. Schroeter, Chem. Comm., 12 (1969)Google Scholar
  140. (b).
    S. H. Schroeter and C. M. Orlando, J. Org. Chem. 34, 1181 (1969).Google Scholar
  141. 117.
    G. R. Evanega and E. B. Whipple, Tetrahedron Lett., 2163 (1967).Google Scholar
  142. 118.
    G. O. Schenck and R. Steinmetz, Bull. Soc. Chim. Belges 71, 781 (1962).Google Scholar
  143. 119.
    N. C. Yang, Photochem. Photobiol. 7, 767 (1968).Google Scholar
  144. 120.
    N. C. Yang, J. E. Cohen, and A. Shani, J. Amer. Chem. Soc. 90, 3264 (1968)Google Scholar
  145. J. Saltiel, D. R. Neuberger, and M. Wrighton, J. Amer. Chem. Soc. 91, 3658 (1969).Google Scholar
  146. 121.
    N. J. Turro and P. A. Wriede, J. Amer. Chem. Soc. 92, 320 (1970).Google Scholar
  147. 122.
    J. C. Dalton, P. A. Wriede, and N. J. Turro, J. Amer. Chem. Soc. 92, 1318 (1970)Google Scholar
  148. N. J. Turro, P. A. Wriede, and J. C. Dalton, J. Amer. Chem. Soc. 90, 3274 (1968)Google Scholar
  149. N. J. Turro, P. A. Wriede, J. C. Dalton, D. Arnold, and A. Glick, J. Amer. Chem. Soc. 89, 3950 (1967).Google Scholar
  150. 123.
    J. A. Barltrop and H. A. J. Carless, J. Amer. Chem. Soc. 94, 1951 (1972).Google Scholar
  151. 124.
    N. J. Turro, J. C. Dalton, K. Dawes, G. Farrington, R. Hautala, D. Morton, M. Niemazyk, and W. Schore, Acc. Chem. Res. 5, 92 (1972).Google Scholar
  152. 125.
    T. Kubota, K. Shima, S. Toki, and H. Sakurai, Chem. Comm., 1462 (1969).Google Scholar
  153. 126.
    H.-S. Ryang, K. Shima, and H. Sakurai, Tetrahedron Lett., 1091 (1970).Google Scholar
  154. 127.
    W. G. Bentrude and K. R. Darnall, Chem. Comm., 862 (1969).Google Scholar
  155. 128.
    N. J. Turro and P. A. Wriede, J. Org. Chem. 34, 3562 (1969).Google Scholar
  156. 129.
    R. R. Sauers and J. A. Whittle, J. Org. Chem. 34, 3579 (1969)Google Scholar
  157. R. R. Sauers and K. W. Kelly, J. Org. Chem. 35, 498 (1970).Google Scholar
  158. 130.
    M. J. S. Dewar, The Molecular Orbital Theory of Organic Chemistry, McGraw-Hill, New York (1969), pp. 191–247.Google Scholar
  159. 131.
    W. C. Herndon, Tetrahedron Lett., 125 (1971)Google Scholar
  160. W. C. Herndon and W. B. Giles, Mol. Photochem. 2, 277 (1970).Google Scholar

Copyright information

© Plenum Press, New York 1976

Authors and Affiliations

  • Dwaine O. Cowan
    • 1
  • Ronald L. Drisko
    • 2
  1. 1.The Johns Hopkins UniversityBaltimoreUSA
  2. 2.Essex Community CollegeBaltimoreUSA

Personalised recommendations