Advertisement

Cell Division in Bacteria

  • William Donachie

Abstract

This discussion will deal with the timing and localization of division in bacterial cells. Cell division involves a number of biochemically different processes which take place co-ordinately both in space and in time. Thus there are interactions between DNA replication and the various lipid, protein and mucopeptide syntheses involved in septum formation. This interaction is so important that it is not possible to discuss cell division without considering DNA replication. Therefore I wish to start by summarizing the way in which DNA replication is controlled in the cell cycle of E. coli (a similar system of control probably operates also in Bacillus subtilis). (Most of the following discussion refers to E. coli B/r/l because it is only in this strain that the timing of DNA replication has been elucidated for a large number of growth condition. However, there is sufficient information available from other strains to make it virtually certain that the same general rules apply to them also.)

Keywords

Restrictive Temperature Chromosome Replication Termination Protein Division Site Chromosome Origin 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Autissier, F., Jaffe, A. and Kepes, A. (1971) Molec. Gen. Genet. 112: 275.PubMedGoogle Scholar
  2. 2.
    Bird, R.E., Louarn, J., Martuscelli, J. and Caro, L.G. (1972) J. Mol. Biol. 70: 549.PubMedCrossRefGoogle Scholar
  3. 3.
    Clark, D.J. (1968) Cold Spring Harbor Symp. Quant. Biol 33: 823.Google Scholar
  4. 4.
    Clark, D.J. and Maale, O. (1967) J. Molec. Biol. 23: 99.CrossRefGoogle Scholar
  5. 5.
    Cole, R.M. (1965) Bacterid. Rev. 29: 326.Google Scholar
  6. 6.
    Cooper, S. and Helmstetter, C.E. (1968) J. Mol. Biol. 31: 519.PubMedCrossRefGoogle Scholar
  7. 7.
    Donachie, W.D. (1968) Nature 219: 1077.PubMedCrossRefGoogle Scholar
  8. 8.
    Donachie, W.D. (1969) J. Bacteriol. 100: 260.PubMedGoogle Scholar
  9. 9.
    Donachie, W.D. and Begg, K.J. (1970) Nature 227: 1220.PubMedCrossRefGoogle Scholar
  10. 10.
    Donachie, W.D., Hobbs, D.G. and Masters, M. (1968) Nature 219: 1079.PubMedCrossRefGoogle Scholar
  11. 11.
    Donachie, W.D., Jones, N.C. and Teather, R. (1973) Symp. Soc. Gen. Microbiol. 23: 9.Google Scholar
  12. 12.
    Donachie, W.D., Martin, D.T.M. and Begg, K.J. (1971) Nature New Biol. 231: 274.PubMedCrossRefGoogle Scholar
  13. 13.
    Gross, J.D., Karamata, D. and Hempstead, P.G. (1968) Cold Spring Harbor Symp. Quant. Biol. 33: 307.Google Scholar
  14. 14.
    Helmstetter, C.E. (1967) J. Mol. Biol. 24: U17.CrossRefGoogle Scholar
  15. 15.
    Helmstetter, C.E. and Cooper, S. (1968) J. Mol. Biol. 31: 507.PubMedCrossRefGoogle Scholar
  16. 16.
    Helmstetter, C.E. and Pierucci, O. (1968) J. Bacteriol. 95: 1627.PubMedGoogle Scholar
  17. 17.
    Higgins, M.L. and Shockman, G.D. (1971) CRC Critical Reviews in Microbiology 1: 29.PubMedCrossRefGoogle Scholar
  18. 18.
    Hirota, Y., Jacob, F., Ryter, A., Buttin, G. and Nakai, T. (1968) J. Mol. Biol. 35: 175.PubMedCrossRefGoogle Scholar
  19. 19.
    Hohlfeld, R. and Vielmetter, W. (1973) Nature, in press.Google Scholar
  20. 20.
    Inouye, M. (1969) J. Bacterid. 99: 843.Google Scholar
  21. 21.
    Inouye, M. (1971) J. Bacterid. 106: 539.Google Scholar
  22. 22.
    Jones, N.C. and Donachie, W.D. (1973) Nature, in press.Google Scholar
  23. 23.
    Kohiyama, M.D., Cousin, D., Ryter, A. and Jacob, F. (1966) Ann. Inst. Pasteur 110: 565.Google Scholar
  24. 24.
    Leal, J. and Marcovich, H. (1971) Ann. Inst. Pasteur 120: 467.Google Scholar
  25. 25.
    Leighton, P.M.L. and Donachie, W.D. (1970) J. Bacteriol. 102: 810.PubMedGoogle Scholar
  26. 26.
    Maale, O. and Kjeldgaard, N.O. (1966) The Control of Macromolecular Synthesis, W.A. Benjamin, New York and Amsterdam.Google Scholar
  27. 27.
    Masters, M. and Broda, P.M.A. (1971) Nature New Biol. 232: 137.PubMedGoogle Scholar
  28. 28.
    Matzura, H., Molin, S. and Maale, O. (1971) J. Molec. Biol. 59: 17.PubMedCrossRefGoogle Scholar
  29. 29.
    Monk, M. (1969) Molec. Gen. Genet. 106: 14.PubMedCrossRefGoogle Scholar
  30. 30.
    Oishi, M., Yoshikawa, H. and Sueoka, N. (1964) Nature 204: 1069.Google Scholar
  31. 31.
    Pierucci, O. and Hemstetter, C.E. (1969) Fed. Proc. 28: 1755.PubMedGoogle Scholar
  32. 32.
    Prescott, D.M. and Kuempel, P.L. (1972) Proc. Nat. Acad. Sci. US. 69: 2842.CrossRefGoogle Scholar
  33. 33.
    Rosner, J.L., Kass, LR. and Yarmolinsky, M.B. (1968) Cold Spring Harbor Symp. Quant. Biol. 33: 785.Google Scholar
  34. 3b.
    Schaechter, M., Maale, O. and Kjeldgaard, N.O. (1958) J. Gen. Microbiol. 19: 592.PubMedGoogle Scholar
  35. 35.
    Spratt, B.G. and Rowbury, R.J. (1971) Molec. Gen. Genet. 114: 35.CrossRefGoogle Scholar
  36. 36.
    Yoshikawa, H., O’Sullivan, A. and Sueoka, N. (196U) Proc. Nat. Acad. Sci. U.S. 52: 973.Google Scholar

Copyright information

© Plenum Press, New York 1974

Authors and Affiliations

  • William Donachie
    • 1
  1. 1.MRC Molecular Genetics UnitEdinburghScotland

Personalised recommendations