DNA Replication and the Construction of the Chromosome

  • Harold Weintraub


It was previously proposed that the normal synthesis of DNA in higher cells was dependent on concurrent synthesis of histone1,2. Evidence for this was based on the fact that four relatively specific experimental manipulations of the rate of histone synthesis led to characteristic alterations in the rate of DNA synthesis. A possible insight into the way histone might function during DNA replication came from the finding that added histone has the capacity to remove nascent DNA from a presumptive replication complex when tested in a cell free system. In continuing these studies on the coupling between DNA synthesis and chromosome assembly, I will present further evidence that (a) nascent DNA is associated with a complex, possibly some “nuclear organelle”, and (b) newly made histone enters the chromosome almost exclusively at the growing fork of DNA replication


Replication Fork Replication Complex Chromosome Replication Reconstructed Curve Daughter Strand 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Weintraub, H.,(1972) Nature 240: 449.PubMedCrossRefGoogle Scholar
  2. 2.
    Weintraub, H. and Holtzer, H., (1972) J. Mol. Biol. 66: 13.PubMedCrossRefGoogle Scholar
  3. 3.
    Clark, R.J. and Felsenfeld, G., (1971) Nature New Biol. 229: 101.PubMedGoogle Scholar
  4. 4.
    Murray, K., (1969) J. Mol. Biol. 39: 125.PubMedCrossRefGoogle Scholar
  5. 5.
    Mirsky, A.E.,(l97l) Proc. Nat. Acad. Sci. USA 68: 29U5.Google Scholar
  6. 6.
    Mirsky, A.E. and Silverman, B. (1972) Proc. Nat. Acad. Sci. USA 69: 2115.PubMedCrossRefGoogle Scholar
  7. 7.
    Mirsky, A.E., Silverman, B. and Panda, N. (1972) Proc. Nat. Acad. Sci. USA 69: 3243.PubMedCrossRefGoogle Scholar
  8. 8.
    Billing, R.J. and Bonner, J. (1972) Biochim. Biophys. Acta. 28l, 453.Google Scholar
  9. 9.
    Lark, K.G., Consigli, R. and Toliver, A. (1971) J. Mol. Biol. 58: 873.PubMedCrossRefGoogle Scholar
  10. 10.
    Engelhardt, P. and Pusa, K. (1972) Nature New Biol. 240: 163.PubMedCrossRefGoogle Scholar
  11. 11.
    Brega, A., Falaschi, A., deCarli, L. and Pavan, M. (1968) J. Cell Biol. 36: 484.CrossRefGoogle Scholar
  12. 12.
    Bennett, L.L., Smither, D. and Ward, C.T. (1964) Biochim. Biophys. Acta. 87: 60.PubMedGoogle Scholar
  13. 13.
    Brown, R.F., Umeda, T., Takai, S. and Lieberman, I. (1970) Biochim. Biophys. Acta. 209: 49PubMedGoogle Scholar
  14. 14.
    Ensminger, W.D. and Tamm, I. (1970) Virology 40: 152.Google Scholar
  15. 15.
    Grollman, A. P. (1968) J. Biol. Chem. 243: 4089.PubMedGoogle Scholar
  16. 16.
    Young, C.W. (1966) Mol. Pharm. 2: 50.Google Scholar
  17. 17.
    Taylor, E.W. ( 1965 Exp. Cell Res. 40: 316.PubMedCrossRefGoogle Scholar
  18. 18.
    Storrie, B. and Attardi, G. (1972) J. Mol. Biol. 71: 177.PubMedCrossRefGoogle Scholar
  19. 19.
    Bourgax, P. and Bourgaux-Ramoisy, D. (1972) Nature 235: 105.CrossRefGoogle Scholar
  20. 20.
    White, M. and Eason, R. (1973) Nature New Biol. 241: 47.Google Scholar
  21. 21.
    Liebermann, I. (1973) Biochim. Biophys. Acta., in press.Google Scholar
  22. 22.
    Kuo, C.H. and August, J.T. (1972) Nature 239: 134.Google Scholar
  23. 23.
    Paul, J. and More, I.R. (1972) Nature 239: 134.Google Scholar
  24. 2k.
    Louie, A.J. and Dixon, G.H. (1972) Proc. Nat. Acad. Sci. USA 69: 1975.Google Scholar
  25. 25.
    Balhorn, R., Oliver, D., Hohmann, P., Chalkley, R. and Granner, D. (1972) Biochemistry 11: 3915.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1974

Authors and Affiliations

  • Harold Weintraub
    • 1
  1. 1.Medical Research Council Laboratory of Molecular BiologyCambridgeEngland

Personalised recommendations