Advertisement

DNA-Unwinding Proteins and their Role in the Replication of DNA

  • Bruce Alberts

Abstract

The first “DNA-unwinding protein” to be characterized was the T4 bacteriophage gene 32-protein (Alberts and Frey, 1970). Since then, other proteins of similar type have been obtained from a variety of organisms. In this article, I would like to review some of their properties and discuss their possible roles in DNA replication.

Keywords

Replication Fork Template Strand Replication Apparatus Extended Linear Complex 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alberts, B. 1971. On the Structure of the Replication Apparatus. In Nucleic Acid-Protein Interactions (Miami Winter Symposia, Vol. II, D. W. Ribbons, J. F. Woessner and J. Schultz, eds., p. 128–143, North Holland, Amsterdam.Google Scholar
  2. Alberts, B. and L. Frey. 1970. T4 Bacteriophage gene 32: a structural protein in the replication and recombination of DNA. Nature. 227: 1313.PubMedCrossRefGoogle Scholar
  3. Alberts, B., L. Frey, and H. Delius. 1972. Isolation and characterization of gene 5-protein of filamentous bacterial viruses. J. Mol. Biol. 68: 139.PubMedCrossRefGoogle Scholar
  4. Alberts, B. and G. Herrick. 1971. In “Nucleic Acids,” Methods in Enzymology, eds. Grossman, L. and Moldave, K. ( Academic Press, N. Y. ), Vol. XXII, pp. 198–217.Google Scholar
  5. Barry, J. and B. Alberts. 1972. In vitro complementation as an assay for new proteins required for bacteriophage T4 DNA replication: purification of the complex specified by T4 genes 44 and 62. Proc. Nat. Acad. Sci., USA. 69: 2712-Google Scholar
  6. Barry, J. H. Hama-Inaba, L. Moran, J. Wiberg and B. Alberts. 1972. Proteins of the T4 bacteriophage replication apparatus. In DNA Synthesis In Vitro ( R. D. Wells and R. B. Inman, eds.) University Park Press, Baltimore, Md.Google Scholar
  7. Carroll, R. B., K. E. Neet and D. Goldthwait. 1972. Self-association of gene-32 protein of bacteriophage T4. Proc. Nat. Acad. Sci., USA. 69: 2741.CrossRefGoogle Scholar
  8. Delius, H., N. Mantell, and B. Alberts. 1972. Characterization by electron microscopy of the complex formed between T4 bacteriophage gene 32-protein and DNA. J. Mol. Biol. 67: 341.PubMedCrossRefGoogle Scholar
  9. Delius, H., H. Westphal and N. Axelrod. 1973. Length measurements of RNA synthesized in vitro by E. coli RNA polymerase. J. Mol. Biol. 74: 677.PubMedCrossRefGoogle Scholar
  10. Epstein, R. H., A. Bolle, C. M. Steinberg, E. Kellenberger, E. Boy de la Tour, R. Chevallez, R. S. Edgar, M. Susman, G. H. Denhardt, and A. Lielausis. 1963. Physiological studies of conditional lethal mutants of bacteriophage T4D. Cold Spring Harbor Symp. Quant. Biol. 28: 375.Google Scholar
  11. Goulian, M., Z. J. Lucas and A. Kornberg. 1968. Enzymatic synthesis of DNA. XXV. Purification and properties of DNA polymerase induced by infection with phage T4. J. Biol. Chem. 243: 627.PubMedGoogle Scholar
  12. Gross, J. D. 1972. DNA replication in bacteria, In Current Topics in Microbiology and Immunology. 57: 39. ( Springer Verlag, Berlin, Heidelberg, New York ).CrossRefGoogle Scholar
  13. Mosig, G., D. W. Bowden and S. Bock. 1972. E. coli DNA polymerase I and other host functions participate in T4 DNA replication and recombination. Nature New Biology. 240: 12.Google Scholar
  14. Oey, J. L. and R. Knippers. 1972. Properties of the isolated gene 5 protein of bacteriophage fd. J. Mol. Biol. 68: 125.PubMedCrossRefGoogle Scholar
  15. Olivera, B. and F. Bonhoeffer. 1972. Discontinuous DNA replication in vitro. I. Two distinct size classes of intermediates. Nature New Biology. 240: 233.PubMedCrossRefGoogle Scholar
  16. Riggs, A., S. Bourgeois and M. Cohn. 1970. The lac repressor- operator interaction. III. Kinetic studies. J. Mol. Biol. 53,: 401.Google Scholar
  17. Salstrom, J. S. and D. Pratt. 1971. Role of Coliphage M13 gene 5 in single-stranded DNA production. J. Mol. Biol. 61: 489.PubMedCrossRefGoogle Scholar
  18. Sigal, N., H. Delius, T. Romberg, M. Gefter and B. Alberts. 1972. A DNA-unwinding protein isolated from E. coli: its interaction with DNA and with DNA polymerases. Proc. Nat. Acad. Sci., USA. 69: 3537.CrossRefGoogle Scholar
  19. Sinha, N. K. and D. P. Snustad. 1971. DNA synthesis in bacteriophage T4-infected E. coli: evidence supporting a stoichiometric role for gene 32-product. J. Mol. Biol. 62: 267.PubMedCrossRefGoogle Scholar
  20. Snustad, D. P. 1968. Dominance interactions in E. coli cells mixedly infected with bacteriophage T4 wild-type and amber mutants and their possible implications as to type of gene- product function: catalytic vs. stoichiometric. Virology. 35: 550.PubMedCrossRefGoogle Scholar
  21. Sugino, A., S. Hirose and R. Okazaki. 1972. RNA-linked nascent DNA fragments in Escherichia coli. Proc. Nat. Acad. Sci., USA. 69: 1863.CrossRefGoogle Scholar
  22. Sugino, A. and R. Okazaki. 1972. Mechanism of DNA chain growth. VII. Direction and rate of growth of T4 nascent short DNA chains. J. Mol. Biol. 64: 61.PubMedCrossRefGoogle Scholar
  23. Warner, H. R. and M. D. Hobbs. 1967. Incorporation of uracil-C into nucleic acids in Escherichia coli infected with bacterio-phage T4 and T4 amber mutants. Virology. 33: 376.PubMedCrossRefGoogle Scholar
  24. Werner, R. 1968. Initiation and propagation of growing points in the DNA of phage T4. Cold Spring Harbor Symp. Quant. Biol. 33: 501.PubMedCrossRefGoogle Scholar
  25. Wolfson, J. and D. Dressier. 1972. Regions of single-stranded DNA in growing points of replicating bacteriophage T7 chromosomes. Proc. Nat. Acad. Sci., USA. 69: 2682.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1974

Authors and Affiliations

  • Bruce Alberts
    • 1
  1. 1.Department of Biochemical SciencesPrinceton UniversityUSA

Personalised recommendations