Skip to main content

Replication of Bacteriophage ϕX174 Replicative Form DNA In Vivo

  • Chapter
Mechanism and Regulation of DNA Replication

Summary

The replication of the circular double-stranded bacteriophage φX174 replicative form DNA was studied by structural analysis of pulse-labeled replicative intermediates. Evidence is presented that φX replicative form replicates according to a rolling circle model proposed by Dressier & Wolfson (1970). Replication involves continuous elongation of the viral (= positive) strand component of replicative form resulting in the displacement of a single-stranded tail of increasing length. Replicative intermediates sedimenting at 27 to 28 s are found to contain linear viral strands of approximately double φX unit length. The synthesis of the new complementary (= negative) strand on the single-stranded tail appears to be initiated with considerable delay and converts the tail to double-stranded DNA. Before the new negative strand is completed, the replicative intermediates split into (I) a complete RF molecule containing the “old” negative and the “new” positive strand and (il) a linear partially double-stranded “tail” consisting of the complete “old” positive strand and a fragment of the “new” negative strand.

The second part of this study is concerned with the fate during RF replication of these fragments of the rolling circles. The RF II molecules containing the “old” negative strands appear to go into further replication rounds repeatedly. Some of the “tails” were found in the infected cells in their original linear form. “Gapped” RF II molecules which have been described earlier by Schekman and coworkers (1971) are supposed to originate from the tails of rolling circle intermediates by circularization of their positive strand components. Evidence is provided by our experiments that even late during RF replication the gaps exist in the negative strands of RF II rather exclusively. Appropriate chase experiments indicated that the “tails” finally are converted to RF I molecules. Progeny RF I molecules could not be observed to start new replication rounds under our conditions although we cannot exclude that this might happen to some minor extent.

The results presented suggest that the first negative strands rather than the parental positive strands persist as master templates during φX RF replication.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Baas, P.D. & Jansz, H.S. (1972a) J.Mol.Biol. 63: 557.

    Article  PubMed  CAS  Google Scholar 

  2. Baasj P.D. & Jansz, H.S. (1972b) J.Mol.Biol. 63: 569.

    Article  Google Scholar 

  3. Burton, A. & Sinsheimer, R.L. (1963) Science 142: 962.

    Article  PubMed  CAS  Google Scholar 

  4. Burton, A. & Sinsheimer, R.L. (1965) J.Mol.Biol. 14: 327.

    Article  PubMed  CAS  Google Scholar 

  5. Dressler, D. & Wolfson, J. (1970) Proc.Nat.Acad.Sci., Wash. 67: 456.

    Article  CAS  Google Scholar 

  6. Fiers, W. & Sinsheimer, R.L. (1965) J.Mol.Biol. 5: 424.

    Article  Google Scholar 

  7. Forsheit, A.B., Ray, D.S. & Lica, L. (1971) J.Mol.Biol. 57: 117.

    Article  PubMed  CAS  Google Scholar 

  8. Francke, B. & Ray, D.S. (1971) J.Mol.Biol. 6l: 565.

    Article  Google Scholar 

  9. Francke, B. & Ray, D.S. (1971) J.Mol.Biol. 61: 565.

    Article  PubMed  CAS  Google Scholar 

  10. Geider, K., Lechner, H. & Hoffmann-Berling, H. (1972) J.Mol. Biol. 69: 333.

    Article  PubMed  CAS  Google Scholar 

  11. Gilbert, W. & Dressler, D. (1968) Cold Spr.Harb.Symp.Quant. Biol. 33: U73.

    Article  Google Scholar 

  12. Hess, U., Durwald, H. & Hoffmann-Berling, H. (1972) J.Mol.Biol. In press.

    Google Scholar 

  13. Hohn, B., Lechner, H. & Marvin, D.A. (1971) J.Mol.Biol. 56: 143.

    Article  PubMed  CAS  Google Scholar 

  14. Kaerner, H.C. (1970) J.Mol.Biol. 53: 515.

    Article  PubMed  CAS  Google Scholar 

  15. Knippers, R. (1969) Habilitationsschrift. Heidelberg.

    Google Scholar 

  16. Knippers, R., Komano, T. & Sinsheimer, R.L. (1968) Proc.Nat. Acad.Sci., Wash. 59: 577.

    CAS  Google Scholar 

  17. Knippers, R., Razin, A., Davis, R. & Sinsheimer, R.L. (1969) J.Mol.Biol. 45: 237.

    Article  PubMed  CAS  Google Scholar 

  18. Knippers, R. & Sinsheimer, R.L. (1968) J.Mol.Biol. 34: 17.

    Article  PubMed  CAS  Google Scholar 

  19. Lindqvist, B.H. & Sinsheimer, R.L. (1967) J.Mol.Biol. 30: 69.

    Article  PubMed  CAS  Google Scholar 

  20. Reed, B., Wickner, W., Ginsberg, B., Berkower, I. & Hurwitz, J. (1972) J.Biol.Chem. 247: U89.

    Google Scholar 

  21. Richardson, C.C., Lehman, I.R. Sc Kornberg, A. (1964) J.Biol. Chem. 239: 251.

    PubMed  CAS  Google Scholar 

  22. Salstrom, J.S. 8c Pratt, D. (1971) J.Mol.Biol. 6l: U89.

    Google Scholar 

  23. Schekman, R.W., Iwaya, M., Bromstrup, K. & Denhardt, D.T. (1971) J.Mol.Biol. 57: 177.

    Article  PubMed  CAS  Google Scholar 

  24. Schekman, R.W. & Ray, D.S. (1971) Nature 231: 170.

    Article  CAS  Google Scholar 

  25. Schröder, C.H. (1970) Theses (Diploma). Faculty of Biology, University of Heidelberg.

    Google Scholar 

  26. Schröder, C.H. (1972) Doctoral Dissertation. Faculty of Biology, University of Heidelberg.

    Google Scholar 

  27. Siegel, J.E.D. & Hayashi, N. (1967) J.Mol.Biol. 27: 443.

    Article  PubMed  CAS  Google Scholar 

  28. Sinsheimer, R.L. (1968) Progr.Nucl.Acid Hes. and Mol.Biol. 8: 115.

    Article  CAS  Google Scholar 

  29. Sinsheimer, R.L., Hutchinson, C.A. & Lindqvist, B. (1967) In The Molecular Biology of Viruses, p 175. New York: Academic Press.

    Google Scholar 

  30. Sinsheimer, R.L., Starman, B., Nagler, C. & Guthrie, S. (1962) J.Mol.Biol, 4: 142.

    Article  PubMed  CAS  Google Scholar 

  31. Studier, W.F. (1965) J.Mol.Biol. 11: 373.

    Article  PubMed  CAS  Google Scholar 

  32. Tessman, E.S. (1966) J.Mol.Biol. 17: 218.

    Article  PubMed  CAS  Google Scholar 

  33. Vinograd, J., Morris, J., Davidson, N. & Dove, W.F. (1963) Proc.Nat.Acad.Sci., Wash. 49: 12.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1974 Plenum Press, New York

About this chapter

Cite this chapter

Schröder, C.H., Kaerner, HC. (1974). Replication of Bacteriophage ϕX174 Replicative Form DNA In Vivo . In: Kolber, A.R., Kohiyama, M. (eds) Mechanism and Regulation of DNA Replication. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-2124-8_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-2124-8_10

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-2126-2

  • Online ISBN: 978-1-4684-2124-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics