Advertisement

Replication of Bacteriophage ϕX174 Replicative Form DNA In Vivo

  • Claus H. Schröder
  • Hans-Christian Kaerner

Summary

The replication of the circular double-stranded bacteriophage φX174 replicative form DNA was studied by structural analysis of pulse-labeled replicative intermediates. Evidence is presented that φX replicative form replicates according to a rolling circle model proposed by Dressier & Wolfson (1970). Replication involves continuous elongation of the viral (= positive) strand component of replicative form resulting in the displacement of a single-stranded tail of increasing length. Replicative intermediates sedimenting at 27 to 28 s are found to contain linear viral strands of approximately double φX unit length. The synthesis of the new complementary (= negative) strand on the single-stranded tail appears to be initiated with considerable delay and converts the tail to double-stranded DNA. Before the new negative strand is completed, the replicative intermediates split into (I) a complete RF molecule containing the “old” negative and the “new” positive strand and (il) a linear partially double-stranded “tail” consisting of the complete “old” positive strand and a fragment of the “new” negative strand.

The second part of this study is concerned with the fate during RF replication of these fragments of the rolling circles. The RF II molecules containing the “old” negative strands appear to go into further replication rounds repeatedly. Some of the “tails” were found in the infected cells in their original linear form. “Gapped” RF II molecules which have been described earlier by Schekman and coworkers (1971) are supposed to originate from the tails of rolling circle intermediates by circularization of their positive strand components. Evidence is provided by our experiments that even late during RF replication the gaps exist in the negative strands of RF II rather exclusively. Appropriate chase experiments indicated that the “tails” finally are converted to RF I molecules. Progeny RF I molecules could not be observed to start new replication rounds under our conditions although we cannot exclude that this might happen to some minor extent.

The results presented suggest that the first negative strands rather than the parental positive strands persist as master templates during φX RF replication.

Keywords

Rolling Circle Replicative Intermediate Negative Strand Positive Strand Circular Part 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Baas, P.D. & Jansz, H.S. (1972a) J.Mol.Biol. 63: 557.PubMedCrossRefGoogle Scholar
  2. 2.
    Baasj P.D. & Jansz, H.S. (1972b) J.Mol.Biol. 63: 569.CrossRefGoogle Scholar
  3. 3.
    Burton, A. & Sinsheimer, R.L. (1963) Science 142: 962.PubMedCrossRefGoogle Scholar
  4. 4.
    Burton, A. & Sinsheimer, R.L. (1965) J.Mol.Biol. 14: 327.PubMedCrossRefGoogle Scholar
  5. 5.
    Dressler, D. & Wolfson, J. (1970) Proc.Nat.Acad.Sci., Wash. 67: 456.CrossRefGoogle Scholar
  6. 6.
    Fiers, W. & Sinsheimer, R.L. (1965) J.Mol.Biol. 5: 424.CrossRefGoogle Scholar
  7. 7.
    Forsheit, A.B., Ray, D.S. & Lica, L. (1971) J.Mol.Biol. 57: 117.PubMedCrossRefGoogle Scholar
  8. 8.
    Francke, B. & Ray, D.S. (1971) J.Mol.Biol. 6l: 565.CrossRefGoogle Scholar
  9. 9.
    Francke, B. & Ray, D.S. (1971) J.Mol.Biol. 61: 565.PubMedCrossRefGoogle Scholar
  10. 10.
    Geider, K., Lechner, H. & Hoffmann-Berling, H. (1972) J.Mol. Biol. 69: 333.PubMedCrossRefGoogle Scholar
  11. 11.
    Gilbert, W. & Dressler, D. (1968) Cold Spr.Harb.Symp.Quant. Biol. 33: U73.CrossRefGoogle Scholar
  12. 12.
    Hess, U., Durwald, H. & Hoffmann-Berling, H. (1972) J.Mol.Biol. In press.Google Scholar
  13. 13.
    Hohn, B., Lechner, H. & Marvin, D.A. (1971) J.Mol.Biol. 56: 143.PubMedCrossRefGoogle Scholar
  14. 14.
    Kaerner, H.C. (1970) J.Mol.Biol. 53: 515.PubMedCrossRefGoogle Scholar
  15. 15.
    Knippers, R. (1969) Habilitationsschrift. Heidelberg.Google Scholar
  16. 16.
    Knippers, R., Komano, T. & Sinsheimer, R.L. (1968) Proc.Nat. Acad.Sci., Wash. 59: 577.Google Scholar
  17. 17.
    Knippers, R., Razin, A., Davis, R. & Sinsheimer, R.L. (1969) J.Mol.Biol. 45: 237.PubMedCrossRefGoogle Scholar
  18. 18.
    Knippers, R. & Sinsheimer, R.L. (1968) J.Mol.Biol. 34: 17.PubMedCrossRefGoogle Scholar
  19. 19.
    Lindqvist, B.H. & Sinsheimer, R.L. (1967) J.Mol.Biol. 30: 69.PubMedCrossRefGoogle Scholar
  20. 20.
    Reed, B., Wickner, W., Ginsberg, B., Berkower, I. & Hurwitz, J. (1972) J.Biol.Chem. 247: U89.Google Scholar
  21. 21.
    Richardson, C.C., Lehman, I.R. Sc Kornberg, A. (1964) J.Biol. Chem. 239: 251.PubMedGoogle Scholar
  22. 22.
    Salstrom, J.S. 8c Pratt, D. (1971) J.Mol.Biol. 6l: U89.Google Scholar
  23. 23.
    Schekman, R.W., Iwaya, M., Bromstrup, K. & Denhardt, D.T. (1971) J.Mol.Biol. 57: 177.PubMedCrossRefGoogle Scholar
  24. 24.
    Schekman, R.W. & Ray, D.S. (1971) Nature 231: 170.CrossRefGoogle Scholar
  25. 25.
    Schröder, C.H. (1970) Theses (Diploma). Faculty of Biology, University of Heidelberg.Google Scholar
  26. 26.
    Schröder, C.H. (1972) Doctoral Dissertation. Faculty of Biology, University of Heidelberg.Google Scholar
  27. 27.
    Siegel, J.E.D. & Hayashi, N. (1967) J.Mol.Biol. 27: 443.PubMedCrossRefGoogle Scholar
  28. 28.
    Sinsheimer, R.L. (1968) Progr.Nucl.Acid Hes. and Mol.Biol. 8: 115.CrossRefGoogle Scholar
  29. 29.
    Sinsheimer, R.L., Hutchinson, C.A. & Lindqvist, B. (1967) In The Molecular Biology of Viruses, p 175. New York: Academic Press.Google Scholar
  30. 30.
    Sinsheimer, R.L., Starman, B., Nagler, C. & Guthrie, S. (1962) J.Mol.Biol, 4: 142.PubMedCrossRefGoogle Scholar
  31. 31.
    Studier, W.F. (1965) J.Mol.Biol. 11: 373.PubMedCrossRefGoogle Scholar
  32. 32.
    Tessman, E.S. (1966) J.Mol.Biol. 17: 218.PubMedCrossRefGoogle Scholar
  33. 33.
    Vinograd, J., Morris, J., Davidson, N. & Dove, W.F. (1963) Proc.Nat.Acad.Sci., Wash. 49: 12.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1974

Authors and Affiliations

  • Claus H. Schröder
    • 1
  • Hans-Christian Kaerner
    • 1
  1. 1.Abteilung für Molekulare BiologieMax-Planck-Institut für Medizinische ForschungHeidelbergW. Germany

Personalised recommendations