The Role of Shock Waves in the Chemical Evolution of Earth’s Primitive Atmosphere

  • A. Shaviv
  • A. Bar-Nun


Oparin and Haldane’s extension into the prebiological era of Darwin’s concepts on evolution have given us all a new insight into the complex phenomena of life on Earth, and opened new horizons for a search for life elsewhere (1,2). Recently, we have witnessed the merging of the disciplines of both theory on the origin of life and mankind’s technical capability of evaluating it, by searching for life on other planets. Thus, the contribution of Oparin and Haldane to the field of prebiological evolution cannot be overestimated. The cornerstone of the Oparin-Haldane theory is the reducing character of Earth’s primitive atmosphere, in which the primary chemical processes took place. To date, despite the enormous progress in the field of synthesis of complex compounds in a reducing atmosphere (25), relatively little is known about the dynamics of the evolution of Earth’s atmosphere. The often used assumption of a state of thermodynamic equilibrium throughout the atmosphere’s evolutionary track (30), is not fully justified for a system with a continuous influx of material and energy. Instead, a dynamic approach should be adopted, taking into account the rate of exhalation from the interior of the planet and the effects of the various sources of energy.


Shock Wave Shock Tube Chemical Evolution Hydrogen Sulphide Exhalation Rate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Oparin, A.I., “Proiskhozhdenie zhizny,” Izd. Moskovskii Rabochii, Moscow, 1924; “The Origin of Life”, The Macmillan Company, New York, 1938.Google Scholar
  2. 2.
    Haidane, J.B.S., Rationalist Annual, 148 (1929).Google Scholar
  3. 3.
    Rubey, W.W., Geol. Soc. Am. Spec. Paper No. 62, p. 531 (1955).Google Scholar
  4. 4.
    Zelikoff, M. and Aschenbrand, M., J. Chem. Phys. 24, 1034 (1956).CrossRefGoogle Scholar
  5. 5.
    Billmeyer, F.W., “Textbook of Polymer Chemistry”, pp. 219–220, Interscience, New York, 1957.Google Scholar
  6. 6.
    Miller, S.L. and Urey, H.C., Science 130, 245 (1959).PubMedCrossRefGoogle Scholar
  7. 7.
    Holland, H.D., in “Petrological Studies” (Engel, A.E.J., James, H.L., and Leonard, B.F., eds.), p. 447, Geological Society of America, 1962.Google Scholar
  8. 8.
    Hochstim, A.R., Proc. Nat. Acad. Sci. U.S. 51, 200 (1963)? ibid., Nature 197, 624 (1963).CrossRefGoogle Scholar
  9. 9.
    Bonnie, J., Heimel, S., Ehlers, J.G., and Gordon, S., “Thermo-dynamic Properties to 6000°K for 210 Substances Involving the First 18 Elements”, NASA Report SP — 3001, 1963.Google Scholar
  10. 10.
    Kondrat’ev, V.N., “Chemical Kinetics of Gas Reactions”, pp. 525–540, Pergamon Press, Oxford, 1964.Google Scholar
  11. 11.
    Schonland, B.F.J., “The Flight of Thunderbolts”, 2nd ed., Clarendon Press, Oxford, 1964.Google Scholar
  12. 12.
    Battan, L.J., The Thunderstorm, New American Library, New York, 1964.Google Scholar
  13. 13.
    McNesby, J.R., and Okabe, H., Advances in Photochem. 3, 157 (1964).CrossRefGoogle Scholar
  14. 14.
    Gay, I.D., Kistiakowsky, G.B., Michael, J.V., and Niki, H., J. Chem. Phys. 43, 1720 (1965).CrossRefGoogle Scholar
  15. 15.
    Sagan, C., in The Origins of Prebiological Systems (Fox, S.W., ed.), pp. 207, 238, Academic Press, New York, 1965.Google Scholar
  16. 16.
    Wexler, S., Lifshitz, A., and Quattrochi, A., Advances in Chem. Series 58, 193 (1966).Google Scholar
  17. 17.
    Handbook of Chemistry and Physics, 47th ed., Chemical Rubber Co., Cleveland, 1966.Google Scholar
  18. 18.
    Cited in: Shklovskii, I.S., and Sagan, C., “Intelligent Life in the Universe”, p. 77, Holden-Day, San Francisco, 1966.Google Scholar
  19. 19.
    Bar-Nun, A., and Lifshitz, A., J. Chem. Phys. 47 2878 (1967).CrossRefGoogle Scholar
  20. 20.
    Rao, V.V., Mackay, D., and Trass, O., Canad. J. Chem. Eng. 45, 61 (1967).CrossRefGoogle Scholar
  21. 21.
    Anbar, M., Science 161, 1343 (1968).PubMedCrossRefGoogle Scholar
  22. 22.
    McGovern, W.E., J. Atmos. Sci. 26, 623 (1969).CrossRefGoogle Scholar
  23. 23.
    Ohring, G., Icarus 11, 171 (1969).CrossRefGoogle Scholar
  24. 24.
    Calvin, M., “Chemical Evolution”, p. 58, Oxford University Press, New York, 1969.Google Scholar
  25. 25.
    West, M.W., and Ponnamperuma, C., Space Life Sci. 2, 225 (1970); Ibid., 3, 293 (1972).PubMedCrossRefGoogle Scholar
  26. 26.
    Bar-Nun, A., Bar-Nun, N., Bauer, S.H., and Sagan, C., Science 168, 470 (1970); Bar-Nun, A., Space Life Sci., in press (1974).Google Scholar
  27. 27.
    Rasool, S.I., and De Bergh, C., Nature 226, 1037 (1970).PubMedCrossRefGoogle Scholar
  28. 28.
    Lasaga, A.C., and Holland, H.D., Science 174, 53 (1971).PubMedCrossRefGoogle Scholar
  29. 29.
    Bar-Nun, A., and Tauber, M., Space Life Sci. 3, 254 (1972).PubMedCrossRefGoogle Scholar
  30. 30.
    Miller, S.L., and Orgel, L.E., “The Origins of Life on Earth”, Prentice-Hall, Inc., Engelwood Cliffs, New Jersey, 1974.Google Scholar

Copyright information

© Plenum Press, New York 1974

Authors and Affiliations

  • A. Shaviv
    • 1
  • A. Bar-Nun
    • 1
  1. 1.Department of Physical ChemistryThe Hebrew UniversityJerusalemIsrael

Personalised recommendations