Micelles and Solid Surfaces as Amino Acid Polymerization Propagators

  • Mella Paecht-Horowitz


In many of his papers and treatises, Oparin advanced the hypothesis that the formation of biomacromolecules from biomonomers might have taken place inside coacervates (1), droplets consisting of polymers separating out from a solution in which a monomer polymerizes in the presence of another polymer. When the new polymer reaches a certain size, phase separation, accompanied by a sharp shift towards synthesis (2), takes place. Evreinova et al. have shown that monomers of the surrounding medium can concentrate inside such coacervates up to a hundred-fold, depending on the type of the polymer forming the coacervate and on the nature of the monomers in the solution (3). These experiments led Oparin to the idea that coacervates were the means of concentration of monomers from dilute solutions and that polymerization takes place inside them.


Free Amino Acid Activate Amino Acid Mixed Anhydride Homogeneous Polymerization High Molecular Weight Substance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Oparin, A. I., “Life, Its Nature, Origin and Development,” p. 47, Oliver and Boyd, Edinburgh, 1961.Google Scholar
  2. 2.
    Oparin, A. I., and Serebrovskaya, K. B., Dokl. Akad. Nauk. SSSR 148, 943 (1963).Google Scholar
  3. 3.
    Evreinova, T. N., Pogosova, P., Tsukawara, T., and Lapinova, T., Nauch, Dokl. Vyssh. Shk. 1, 159 (1962).Google Scholar
  4. 4.
    Calvin, M., Science 130, 1170 (1959).PubMedCrossRefGoogle Scholar
  5. 5.
    Oparin, A. I., Abstr. of the 4th Int. Symp. of the Society for the Study of the Origin of Life, Coloqu. IV, 22, Barcelona, 1973.Google Scholar
  6. 6.
    Bernal, J. D., “The Physical Basis of Life,” Routledge and Kegan Paul, London, 1951.Google Scholar
  7. 7.
    Fox, S. W., “The Origins of Prebiological Systems” (Fox, S. W., ed.), p. 363, Academic Press, New York, 1965.Google Scholar
  8. 8.
    Akabori, S., “Aspects of the Origin of Life” (Florkin, M., ed.), p. 117, Pergamon Press, London, 1960.Google Scholar
  9. 9.
    Katchalsky, A., and Paecht-Horowitz, M., J. Am. Chem. Soc. 76, 6042 (1954).CrossRefGoogle Scholar
  10. 10.
    Kenyon, D. H., Steinman, G., and Calvin, M., Biochim. Biophys. Acta 124, 339 (1966).PubMedCrossRefGoogle Scholar
  11. 11.
    Paecht-Horowitz, M., and Katchalsky, A., Biochim. Biophys. Acta 140, 14 (1967).Google Scholar
  12. 12.
    Lewinsohn, R., Paecht-Horowitz, M., and Katchalsky, A., Biochim. Biophys. Acta 140, 24 (1967).Google Scholar
  13. 13.
    Paecht-Horowitz, M., and Katchalsky, A., J. Mol. Evol. 2, 91 (1973).PubMedCrossRefGoogle Scholar
  14. 14.
    Paecht-Horowitz, M., unpublished results.Google Scholar
  15. 15.
    Lewinsohn, R., and Paecht-Horowitz, M., unpublished results.Google Scholar
  16. 16.
    Paecht-Horowitz, M., Abstr. Fifth Internat. Symp. Chem. Natural Products, p. 232, London, 1968.Google Scholar
  17. 17.
    Paecht-Horowitz, M., “Molecular Evolution, Vol. 1, Chemical Evolution and the Origin of Life” (Buvet, R., and Ponnamperuma, C., eds.), p. 245, North-Holland, Amsterdam, 1971.Google Scholar
  18. 18.
    Paecht-Horowitz, M., Berger, J., and Katchalsky, A., Nature 228, 636 (1970).PubMedCrossRefGoogle Scholar
  19. 19.
    Paecht-Horowitz, M., Israel J. Chem. 11, 369 (1973).Google Scholar
  20. 20.
    Paecht-Horowitz, M., Proc. Fourth Internat. Symp. Soc. Study Origin Life, Barcelona, 1973, in press.Google Scholar
  21. 21.
    Paecht-Horowitz, M., Angew. Chem. Int. Ed. (English) 12, 349 (1973).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1974

Authors and Affiliations

  • Mella Paecht-Horowitz
    • 1
  1. 1.Polymer DepartmentThe Weizmann Institute of ScienceRehovotIsrael

Personalised recommendations