The Search for Remnants of Early Evolution in Present-Day Metabolism

  • Fritz Lipmann


As a newcomer to the field, it makes me quite proud to have been asked to participate in celebrating the 50th anniversary of the appearance of Oparin’s “Origin of Life.” This date truly marks the birth of a new branch of bioscience, which I have only lately begun to appreciate. In this book, Oparin established a base from which one could begin to explore the prebiotic phase of evolution.


Amino Acid Activation Bacterial Ribosome Intermediate Enzyme Clostridium Pasteurianum Polypeptide Synthesis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Davie, E. W., Koningsberger, V. V., and Lipmann, F., Arch. Biochem. Biophys. 65, 21 (1956). The isolation of a tryptophan-activating enzyme from pancreas.PubMedCrossRefGoogle Scholar
  2. 2.
    Chapeville, F., Lipmann, F., von Ehrenstein, G., Weisblum, B., Ray, W. J., Jr., and Benzer, S., Proc. Nat. Acad. Sci. U.S. 48, 1086 (1962). On the role of soluble ribonucleic acid in coding for amino acids.CrossRefGoogle Scholar
  3. 3.
    Lipmann, F., in “The Mechanism of Enzyme Action” (McElroy, W. D., and Glass, B., eds.), p. 599, Johns Hopkins Press, Baltimore, 1954. On the mechanism of some ATP-linked reactions and certain aspects of prote in synthesis.Google Scholar
  4. 4.
    Lipmann, F., Accts. Chem. Res. 6, 361 (1973). Nonribosomal polypeptide synthesis on polyenzyme templates.CrossRefGoogle Scholar
  5. 5.
    Lee, S. G., Roskoski, R., Jr., Bauer, K., and Lipmann, F., Biochemistry 12, 398 (1973). Purification of the polyenzymes responsible for tyrocidine synthesis and their dissociation into subunitsPubMedCrossRefGoogle Scholar
  6. 6.
    Lee, S. G., and Lipmann, F., Proc. Nat. Acad. Sci. U.S. 71, 607 (1974). Isolation of a peptidyl pantetheine protein from tyrocidine-synthesizing polyenzymes.CrossRefGoogle Scholar
  7. 7.
    Lipmann, F., in: “Chemical Evolution and the Origin of Life” (Buvet, R., and Ponnamperuma, C., eds.), p. 381, North-Holland, Amsterdam, 1971. Gramicidin S and tyrocidine biosynthesis; a primitive process of sequential addition of amino acids on polyenzymes.Google Scholar
  8. 8.
    Hall, D. O., Cammack, R., and Rao, K. K., Nature 233, 136 (1971). Role for ferredoxins in the origin of life and biological evolution.PubMedCrossRefGoogle Scholar
  9. 9.
    Hall, D. O., Cammack, R., and Rao, K. K., presented at Fourth International Conference on the Origin of Life, Barcelona, June, 1973, to be published. The iron sulphur proteins: evolution of a ubiquitous protein from model systems to higher organisms.Google Scholar
  10. 10.
    Roskoski, R., Jr., Ryan, G., Kleinkauf, H., Gevers, W., and Lipmann, F., Arch. Biochem. Biophys. 143, 485 (1971). Polypeptide biosynthesis from thioesters of amino acids.PubMedCrossRefGoogle Scholar
  11. 11.
    Stanier, R., in: “Organization and Control in Prokaryotic and Eukaryotic Cells,” p. 1, Cambridge University Press, Cambridge, 1970. Some aspects of the biology of cells and their possible evolutionary significance.Google Scholar
  12. 12.
    Cohen, S. S., Amer. Scientist 58, 281 (1970: Are/were mitochondria and chloroplasts microorganisms? ibid., 61, 437 (1973). Mitochondria and chloroplasts revisited.Google Scholar
  13. 13.
    Margulis, L., Scientific American 225, 48 (1971). Symbiosis and evolution.PubMedCrossRefGoogle Scholar
  14. 14.
    Rendi, R., Exp. Cell Res. 18, 187 (1959). The effect of chloramphenicol on the incorporation of labeled amino acids into proteins by isolated subcellular fractions from rat liver.PubMedCrossRefGoogle Scholar
  15. 15.
    Richter, D., and Lipmann, F., Biochemistry 9, 5065 (1970). Separation of mitochondrial and cytoplasmic peptide chain elongation factors from yeast.PubMedCrossRefGoogle Scholar
  16. 16.
    Nathans, D., and Lipmann, F., Proc. Nat. Acad. Sci. U.S. 47, 497 (1961). Amino acid transfer from aminoacyl ribonucleic acids to protein on ribosomes of Escherichia coli.CrossRefGoogle Scholar
  17. 17.
    Richter, D., Hameister, H., Petersen, H. G., and Klink, F., Biochemistry 7, 3753 (1968). Amino acid transfer factors from yeast. II. Interaction of three partially purified protein fractions with guanosine triphosphate.PubMedCrossRefGoogle Scholar
  18. 18.
    Canning, L., and Griffin, A. C., Biochim. Biophys. Acta 103, 522 (1965). Specificity in the transfer of aminoacyl-s-ribonucleic acid to microbial, liver, and tumor ribosomes.PubMedGoogle Scholar
  19. 19.
    Krisko, I., Gordon, J., and Lipmann, F., J. Biol. Chem. 244, 6117 (1969). Studies on the interchangeability of one of the mammalian and bacterial supernatant factors in protein biosynthesis.Google Scholar
  20. 20.
    Sy, J., Chua, N. H., Ogawa, Y., and Lipmann, F., Biochem. Biophys. Res. Commun. 56, 611 (1974). Ribosome specificity for the formation of guanosine poly-phosphates.PubMedCrossRefGoogle Scholar
  21. 21.
    Richter, D., Biochemistry 10, 4422 (1971). Production of mitochondrial peptide-chain elongation factors in yeast deficient in mitochondrial DNA.PubMedCrossRefGoogle Scholar
  22. 22.
    Raff, R. A., and Mahler, H. R., Science 177, 575 (1972). The nonsymbiotic order of mitochondria.PubMedCrossRefGoogle Scholar
  23. 23.
    Schopf, J. W., Biol. Rev. 45, 319 (1970). Precambrian micro-organisms and evolutionary events prior to the origin of vascular plants.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1974

Authors and Affiliations

  • Fritz Lipmann
    • 1
  1. 1.The Rockefeller UniversityNew YorkUSA

Personalised recommendations