Amino and Fatty Acids in Carbonaceous Meteorites

  • Keith A. Kvenvolden


The presence of organic substances in carbonaceous meteorites has been known for at least one hundred and forty years. In 1834, for example, Berzelius (1) extracted complex organic substances from the Alais meteorite, and speculated about the significance of his discovery and its relationship to the possibility of extraterrestrial life. Since that time many studies of the organic chemistry of meteorites have been undertaken (2), and during this period controversies have developed concerning whether the organic material was a product of some extraterrestrial life. Within the last few years, however, new discoveries have narrowed the speculation. It is now generally believed that the indigenous organic compounds in meteorites are not derived from an extraterrestrial biota, but rather have been produced extraterrestrially by non- biological, chemical syntheses (3-8). In fact, these recent discoveries have provided persuasive, naturally occurring evidence in strong support of the theory of chemical evolution as first proposed by A. I. Oparin (9) in 1924.


Succinic Acid Living System Octanoic Acid Pipecolic Acid Heptanoic Acid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Berzelius, J. J., Ann. Phys. Chem. 33, 113 (1834).CrossRefGoogle Scholar
  2. 2.
    Hayes, J. M., Geochim. Cosmochim. Acta 31, 1395 (1967).CrossRefGoogle Scholar
  3. 3.
    Kvenvolden, K. A., Lawless, J., Pering, K., Peterson, E., Flores, J., Ponnamperuma, C., Kaplan, I. R., and Moore, C., Nature 228, 923 (1970).PubMedCrossRefGoogle Scholar
  4. 4.
    Kvenvolden, K. A., Lawless, J. G., and Ponnamperuma, C., Proc. Nat. Acad. Sci. U.S. 68, 486 (1971).Google Scholar
  5. 5.
    Cronin, J. R., and Moore, C. B., Science 172, 1327 (1971).PubMedCrossRefGoogle Scholar
  6. 6.
    Oró, J., Nakaparksin, S., Lichtenstein, H., and Gil-Av, E., Nature 230, 107 (1971).PubMedCrossRefGoogle Scholar
  7. 7.
    Oró, J., Gibert, J., Lichtenstein, H., Wikstrom, S., and Flory, D. A., Nature 230, 105 (1971).PubMedCrossRefGoogle Scholar
  8. 8.
    Lawless, J. G., Kvenvolden, K. A., Peterson, E., Ponnamperuma, C., and Moore, C., Science 173, 626 (1971).PubMedCrossRefGoogle Scholar
  9. 9.
    Oparin, A. I., “Proiskhozhdenie zhizni,” Izd. Moskovskii Rabochii, Moscow, 1924.Google Scholar
  10. 10.
    Jarosewich, E., Meteoritics 6, 49 (1971).Google Scholar
  11. 11.
    Yuen, G. U., and Kvenvolden, K. A., Nature 246, 301 (1973).CrossRefGoogle Scholar
  12. 12.
    Pereira, W. E., Summons, R. E., Rindfleisch, T. C., Duffield, A. M., Zeitman, B., and Lawless, J. G., Geochim. Cosmochim. Acta, submitted (1973).Google Scholar
  13. 13.
    Lawless, J. G., Geochim. Cosmochim. Acta 37, 2207 (1973).CrossRefGoogle Scholar
  14. 14.
    Miller, S. L., Science 130, 245 (1959).PubMedCrossRefGoogle Scholar
  15. 15.
    Ring, D., Wolman, Y., Friedman, N., and Miller, S. L., Proc. Nat. Acad. Sci. U.S. 69, 765 (1972).Google Scholar
  16. 16.
    Wolman, Y., Haverland, W. J., and Miller, S. L., Proc. Nat. Acad. Sci. U.S. 69, 809 (1972).Google Scholar
  17. 17.
    Allen, W. V., and Ponnamperuma, C., Currents Modern Biol. 1, 24 (1967).Google Scholar
  18. 18.
    Budzikiewicz, H., Djerassi, C., and Williams, D. H., “Mass Spectrometry of Organic Compounds,” P. Holden-Day, Inc., San Francisco, 1967.Google Scholar
  19. 19.
    Markley, K. S., ed., “Fatty Acids,” Pt. 1, Interscience, New York, 1960.Google Scholar
  20. 20.
    Lawless, J. G., Zeitman, B., Pereira, W. E., and Duffield, A. M., Nature, submitted (1974).Google Scholar

Copyright information

© Plenum Press, New York 1974

Authors and Affiliations

  • Keith A. Kvenvolden
    • 1
  1. 1.Chemical Evolution Branch-Planetary Biology Division Ames Research CenterNASAMoffett FieldUSA

Personalised recommendations