Amino Acid Synthesis by Glow Discharge Electrolysis: A Possible Route for Prebiotic Synthesis of Amino Acids

  • Kaoru Harada


A considerable number of studies on the formation of amino acids under inferred prebiotic conditions using various organic and inorganic compounds have been reported in the past twenty years. In these studies, several elegant analytical methods, developed since the early 1950s, have played a crucial role in amino acid analyses from these complex reaction products. Amino acids were synthesized from gas mixtures by applying various types of energy, such as electric discharge, ultraviolet rays, ionizing radiation, thermal energy, and other sources such as shock waves. Amino acids were also synthesized from chemically reactive compounds such as hydrogen cyanide, formaldehyde, and ammonia. These accumulated results indicate that the formation of amino acids occurs rather easily, in many ways, under various inferred prebiotic conditions.


Aspartic Acid Amino Acid Analysis Amino Acid Synthesis Hydrogen Cyanide Prebiotic Synthesis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Miller, S. L., Science 117, 528 (1953).PubMedCrossRefGoogle Scholar
  2. 2.
    Miller, S. L., J. Am. Chem. Soc. 77, 2351 (1955).CrossRefGoogle Scholar
  3. 3.
    Oró, J., and Kamat, S. S., Nature 190, 442 (1961).PubMedCrossRefGoogle Scholar
  4. 4.
    Lowe, C. U., Rees, M. W., and Markham, R., Nature 199, 219 (1963).PubMedCrossRefGoogle Scholar
  5. 5.
    Harada, K., Nature 214, 479 (1967).CrossRefGoogle Scholar
  6. 6.
    Hasselstrom, T., Henry, M. C., and Murr, B., Science 125, 350 (1957).PubMedCrossRefGoogle Scholar
  7. 7.
    Dose, K., and Ettre, K., Z. Naturforsch. 13b, 784 (1958).Google Scholar
  8. 8.
    Dose, K., and Risi, S., Z. Naturforsch. 23b, 581 (1968).Google Scholar
  9. 9.
    Deschreider, A. R., Nature 182, 528 (1958).PubMedCrossRefGoogle Scholar
  10. 10.
    Cultera, R., and Ferrari, G., Ann. Chimica 47, 1321 (1957); 47, 1331 (1957); 48, 1410 (1958).Google Scholar
  11. 11.
    Mehran, A. R., and Pageau, R., Can. J. Biochem. 43, 1359 (1965).CrossRefGoogle Scholar
  12. 12.
    Harada, K., Protein, Nucleic Acid and Enzyme 6, 65 (1961).Google Scholar
  13. 13.
    Hickling, A., and Ingram, M. D., J. Electroanal. Chem. 8, 65 (1964).CrossRefGoogle Scholar
  14. 14.
    Hickling, A., in: “Modern Aspects of Electrochemistry”(Bockris, J. O., and Conway, B. E., eds.), Vol. 6, p. 329, Plenum Press, New York, 1971.Google Scholar
  15. 15.
    See literature cited, ref. 14.Google Scholar
  16. 16.
    Klemenc, A., Z. Elektrochem. 56, 694 (1953).Google Scholar
  17. 17.
    Gore, G. H., and Hickling, A., ref. 14, p. 352.Google Scholar
  18. 18.
    Brown, E. H., Wilhide, W. D., and Elmore, K. L., J. Org. Chem. 29, 5698 (1962).Google Scholar
  19. 19.
    Woodman, J. F., U.S. Patent 2,632, 729 (1953).Google Scholar
  20. 20.
    Denaro, A. R., and Hough, K. D., Electrochim. Acta 18, 863 (1973).CrossRefGoogle Scholar
  21. 21.
    Hickling, A., and Ingram, M. D., J. Chem. Soc. 783 (1964).Google Scholar
  22. 22.
    Sanger, F., Biochem. J. 39, 507 (1945).Google Scholar
  23. 23.
    Rao, K. R., and Sober, H. A., J. Am. Chem. Soc. 76, 1328 (1954).CrossRefGoogle Scholar
  24. 24.
    Perrone, J. C., Nature 167, 513 (1951).PubMedCrossRefGoogle Scholar
  25. 25.
    Court, A., Biochem. J. 58, 70 (1954).Google Scholar
  26. 26.
    Fox, S. W., and Dose, K., “Molecular Evolution and the Origin of Life,” p. 90, W. H. Freeman and Co., San Francisco, 1972.Google Scholar

Copyright information

© Plenum Press, New York 1974

Authors and Affiliations

  • Kaoru Harada
    • 1
  1. 1.Institute for Molecular and Cellular Evolution and Department of ChemistryUniversity of MiamiCoral GablesUSA

Personalised recommendations