Evolution and Ecology of Phosphorus Metabolism

  • M. Halmann


The particular role of phosphorus in living systems poses many riddles. Why does this element fulfill such important functions? Phosphate esters, acid anhydrides and amides serve as key intermediates in metabolic processes. The phosphate group is an essential link in the chain of nucleic acids — the storage molecules of hereditary information. Many important coenzymes and cofactors are phosphorus compounds. Attempts have been made to rationalize the role of phosphorus on the basis of the bonding characteristics of this element (1). In the present chapter, the evolution of phosphorus metabolism will be outlined, from the nucleosynthesis of the element in stars to its emergence as the limiting nutrient in the fertility of many natural waters. A most valuable guideline in our quest to understand the evolution of metabolism is Oparin’s hypothesis that metabolic pathways appeared earlier than the enzymes which now catalyze these pathways:


Continental Shelf Phosphate Rock Phosphorus Compound Lunar Regolith Carbonate Apatite 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Wald, G., in “Horizons in Biochemistry” ( Kasha, M., and B. Pullman, B., eds.), p. 127, Academic Press, New York, 1962.Google Scholar
  2. 2.
    Oparin, A.I., “Genesis and Evolutionary Development of Life”, p. 95, Academic Press, New York, 1968.Google Scholar
  3. 3.
    Margalef, R., “Perspectives in Ecological Theory”, p. 100, University of Chicago Press, Chicago, 1968.Google Scholar
  4. 4.
    Burbidge, E.M., Burbidge, G.R., Fowler, W.A., and Hoyle, F., Rev. Mod. Phys. 29, 552 (1957).CrossRefGoogle Scholar
  5. 5.
    Halmann, M., in “Analytical Chemistry of Phosphorus Compounds” (Halmann, M., ed.), p. 1, Wiley-Interscience, New York, 1972.Google Scholar
  6. 7.
    Buseck, P.R., Science 165 169 (1969).PubMedCrossRefGoogle Scholar
  7. 9.
    Engel, A.E., and Engel, C.E., Science 167, 527 (1970); Maxwell, J.A., Abbey, S., and Champ, W.H., ibid., 530.PubMedCrossRefGoogle Scholar
  8. 10.
    Fuchs, L.H., in “Proceedings of the Apollo 11 Lunar Science Conference”, Vol. 1 (Levinson, E.A., ed.) Supplement 1 to Geochim. Cosmochim. Acta 34, 475 (1970).Google Scholar
  9. 11.
    Gulbrandsen, R.A., Econ. Geol. 64, 365 (1969); Kazakov, A.V., Akad. Nauk SSH, Trud. Inst. Geol. Nauk 114, Geol. Ser. No. 40, 1, (1950).CrossRefGoogle Scholar
  10. 12.
    Bentor, Y.K., Internat. Geol. Cong. 19th, Algiers 1952, Compt. rend., sec. 11, pt. 11, pp. 93–101, 1953.Google Scholar
  11. 13.
    Baturin, G.N., Nature (Physical Science) 232, 61 (1971).Google Scholar
  12. 14.
    Degens, E.T., “Geochemistry of Sediments”, p.141, Prentice-Hall, 1965.Google Scholar
  13. 15.
    Ames, L.L., Jr., Econ. Geol. 54, 829 (1959).CrossRefGoogle Scholar
  14. 16.
    Mansfield, G.R., Amer. J. Sci. 238, 863 (1940).CrossRefGoogle Scholar
  15. 17.
    Bray, J.T., Bricker, O.P., and Troup, B.N., Science 180, 1362 (1973).PubMedCrossRefGoogle Scholar
  16. 18.
    Gulick, A.A., Amer. Scientist 43, 479 (1955).Google Scholar
  17. 19.
    Horowitz, N.H., and Miller, S.L., Fortsch. Chem. Org. Naturstoffe 20, 423 (1962).Google Scholar
  18. 20.
    Ryther, J.H., and Dunstan, W.M., Science 171, 1008 (1971).PubMedCrossRefGoogle Scholar
  19. 21.
    Medveczky, N., and Rosenberg, H., Biochim. Biophys. Acta 211, 158, (1970).CrossRefGoogle Scholar
  20. 22.
    Jeanjean, R., Blasco, F., and Gaudin, C., Compt. rend. Acad. Sc. Ser. D. 270, 2946, (1970).Google Scholar
  21. 23.
    Smith, F.A., Biochim. Biophys. Acta 126, 94 (1966).PubMedCrossRefGoogle Scholar
  22. 24.
    Broda, E., in “Progress in Biophysics and Molecular Biology”, Vol. 21 (Butler, J.A.V., and Noble, D., eds.), Vol. 21, p. 143, Pergamon Press, Oxford, 1970.Google Scholar
  23. 25.
    Degani, Ch., and Halmann, M., Nature 216, 1207 (1967).CrossRefGoogle Scholar
  24. 26.
    Egami, F., Z. Allgem. Mikrobiol. 13, 177 (1973).CrossRefGoogle Scholar
  25. 27.
    Ponnamperuma, C., and Mack, R., Science 148, 1221 (1965).PubMedCrossRefGoogle Scholar
  26. 28.
    Waehneldt, T.V., and Fox, S.W., Biochim. Biophys. Acta 134, 1 (1967).Google Scholar
  27. 29.
    Rabinowitz, J., Sherwood, C., and Ponnamperuma, C., Nature 218, 442 (1968).PubMedCrossRefGoogle Scholar
  28. 30.
    Osterberg, R., and Orgel, L.E., J. Mol. Evol. 1, 241 (1972); Osterberg, R., Orgel, L.E., and Lohrmann, R., ibid. 2, 231 (1973).CrossRefGoogle Scholar
  29. 31.
    Bishop, M.J., Lohrmann, R., and Orgel, L.E., Nature 237, 162 (1972).PubMedCrossRefGoogle Scholar
  30. 32.
    Steinman, G., Lemmon, R.M., and Calvin, M., Proc. Nat. Acad. Sci. U.S. 52, 27 (1964); Steinman, G., Kenyon, D.H., and Calvin, M., Nature 206, 707 (1965); Ferris, J.P. Science 161, 53 (1968).CrossRefGoogle Scholar
  31. 33.
    Halmann, M., Sanchez R.A., and Orgel, L.E., J. Org. Chem. 34. 3702 (1969).CrossRefGoogle Scholar
  32. 3b.
    Degani, Ch., and Halmann, M., J. Chem. Soc. 1459 (1971).Google Scholar
  33. 35.
    Degani, Ch., and Halmann, M., Nature (New Biology) 235, 171 (1972)CrossRefGoogle Scholar
  34. 36.
    Kawatsuji, M., “Cyanogen-Induced Phosphorylation of D-Fructose” M. Sc. Thesis, Feinberg Graduate School, Weizmann Institute of Science, Rehovot, 1973.Google Scholar
  35. 37.
    Lohrmann, R., and Orgel, L.E., Science 161, 64 (1968).PubMedCrossRefGoogle Scholar
  36. 38.
    Schwartz, A.W., Biochim. Biophys. Acta 281, 477 (1972); Schwartz, A.W., van der Veen, M., Bisseling, T., and Chittenden G.J.F., BioSystems 5, 119 (1973).PubMedGoogle Scholar
  37. 39.
    Oparin, A.I., “The Origin of Life”, (Transl. by Morgulis, S.), Macmillan, New York, 1938.Google Scholar
  38. 40.
    Urey, H.C., “The Planets”, Yale University Press, New Haven, 1952.Google Scholar
  39. 41.
    Miller, S.L., and Urey, H.C., Science 130, 245 (1959).PubMedCrossRefGoogle Scholar
  40. 42.
    Rubey, W. W., Geol. Soc. Amer. Special Papers 62, 631 (1955); Rubey, W. W., in “The Origin and Evolution of Atmospheres and Oceans” (Brancazio, P. J., and Cameron, A.G.W., eds.), Wiley, New York, 1964.Google Scholar
  41. 42.
    Revelle, R. J., J. Marine Res. 14, 446 (1965).Google Scholar
  42. 44.
    Halmann, M., to be published.Google Scholar

Copyright information

© Plenum Press, New York 1974

Authors and Affiliations

  • M. Halmann
    • 1
  1. 1.Isotope DepartmentWeizmann Institute of ScienceRehovotIsrael

Personalised recommendations