Photochemical Formation of Organic Compounds from Mixtures of Simple Gases Simulating the Primitive Atmosphere of the Earth

  • Wilhelm Groth


Already in the 1938 English edition of his book “The Origin of Life” A. I. Oparin (3) gave strong reasons for the assumption that the primordial or primitive atmosphere of the Earth was a “reducing atmosphere,” consisting mainly of hydrogen, methane, ammonia, water vapour, and noble gases. In addition he presented many facts supporting the assumption that carbon appeared first on the Earth’s surface, not in the oxidized form of carbon dioxide, but in the reduced state in the form of hydrocarbons. He added that nitrogen first appeared, with a high degree of probability, like carbon, also in its reduced state, in the form of ammonia. These assumptions were later on supported by H. C. Urey (4), W. Kuhn (5), J. D. Bernal (6), and others.


Water Vapour Direct Photolysis Photochemical Formation Photochemical Experiment Primitive Atmosphere 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Groth, W., and Suess, H., Naturwissenschaften 26, 77 (1938).CrossRefGoogle Scholar
  2. 2.
    Groth, W., and Weyssenhoff, H. v., Naturwissenschaften 44, 510 (1957). Groth, W., and Weyssenhoff, H. v., Ann. Physik 4, 69 (1959). Groth, W., and Weyssenhoff,H. v., Planetary Space Sci. 2, 79 (1960).CrossRefGoogle Scholar
  3. 3.
    Oparin, A. I., “The Origin of Life,” Macmillan, London, 1938.Google Scholar
  4. 4.
    Urey, H. C., “The Planets,” Oxford University Press, London, 1952. Urey, H. C., Proc. Nat. Acad. Sci. U.S. 31, 351 (1952).Google Scholar
  5. 5.
    Kuhn, W., Chem. Ber. 89, 303 (1956).CrossRefGoogle Scholar
  6. 6.
    Bernal, J. D., “The Physical Basis of Life,” Routledge and Kegan Paul, London, 1957.Google Scholar
  7. 8.
    Unsold, A., “Physik d. Sternatmosphären,” Berlin, 1937.Google Scholar
  8. 9.
    Groth, W., Z. Elektrochem. 42, 533 (1936).Google Scholar
  9. 10.
    Groth, W., Z. Phys. Chem. B37, 307 (1937).Google Scholar
  10. 11.
    Frankenburger, W., Z. Elektrochem. 36, 757 (1937).Google Scholar
  11. 12.
    Groth, W., Z. Phys. Chem. B37, 315 (1937).Google Scholar
  12. 13.
    Miller, S. L., Science 117, 528 (1953); ibid., J. Am. Chem. Soc. 77, 2351 (1955); ibid., Ann. N.Y. Acad. Sci. 69, 260 (1957); ibid., Biochim. Biophys. Acta 23, 480 (1957).PubMedCrossRefGoogle Scholar
  13. 14.
    Heyns, K., Walter, W., and Meyer, E., Naturwissenschaften 44, 385 (1957). Heyns, K., and Pavel, K., Z. Naturforsch. 126. 97 (1954).CrossRefGoogle Scholar
  14. 15.
    Miller, S. L., and Urey, H. C., Science 130, 245 (1959).PubMedCrossRefGoogle Scholar
  15. 16.
    Moore, S., and Stein, W. H., J. Biol. Chem. 211, 893 (1954).PubMedGoogle Scholar
  16. 17.
    Bulen, W. A., Varner, J. E., and Burrel, R. C., Anal. Chem. 24, 187 (1952).CrossRefGoogle Scholar
  17. 18.
    Bates, J. R., J. Am. Chem. Soc. 52, 3852 (1930).CrossRefGoogle Scholar
  18. 19.
    Harteck, P., Bonhoeffer, K. F., and Geib, J. H., Z. Phys. Chem. A139, 64 (1928); ibid., A170, 1 (1934).Google Scholar
  19. 20.
    Darwent, B., J. Chem. Phys. 18, 1532 (1950).CrossRefGoogle Scholar
  20. 21.
    Senftleben, H., and Rehren, J., Z. Phys. Chem. 34, 529 (1926).Google Scholar
  21. 23.
    Dodonova, N., and Siderova, A. L., Biofizika 6, 149 (1961).PubMedGoogle Scholar
  22. 24.
    Ponnamperuma, C., and Flores, J., Abstr. 152nd Nat. Meeting Amer. Chem. Soc., New York (1966).Google Scholar

Copyright information

© Plenum Press, New York 1974

Authors and Affiliations

  • Wilhelm Groth
    • 1
  1. 1.Institute for Physical ChemistryThe University of BonnGermany

Personalised recommendations