Ammonia: Did it have a Role in Chemical Evolution?

  • J. P. Ferris
  • D. E. Nicodem


The possibility that biomolecules necessary for life were formed in a reducing atmosphere was first suggested by Oparin in his classic treatise on the origins of life (2). Urey calculated from equilibrium thermodynamic data that CH4 and NH3 were the predominant compounds of carbon and nitrogen in the atmosphere of the primitive Earth if a minimum of 10-3 atmosphere of H2 were present (3). Rasool and McGovern postulated, on the basis of an equilibrium model for the primitive Earth, that the exospheric temperature was between 500–1000°Kf, so that the rate of H2 loss was relatively slow (4,5). They calculated that, with this slow rate of loss, there would have been sufficient H2 to maintain NH3 in the primitive atmosphere for 108–109 years.


Quantum Yield Chemical Evolution Order Rate Constant Effective Shield Rensselaer Polytechnic Institute 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes and References

  1. 1.
    Chemical Evolution XX. Previous paper in this series: Ferris, J. P., Williams, E. A., Nicodem, D. E., Hubbard, J. S., and Voecks, G. E., Nature, in press (1974). A preliminary report of some of these data has been published by Ferris, J. P. and Nicodem, D. E., Nature 238, 268 (1972).Google Scholar
  2. 2.
    Oparin, A. I., “The Origin of Life on Earth,” Macmillan, London, (Reprinted, Dover, New York, 1953 ).Google Scholar
  3. 3.
    Urey, H. C., Proc. Nat. Acad. Sci. U.S. 38, 351 (1952).CrossRefGoogle Scholar
  4. 4.
    Rasool, S. I., and Mc Govern, W. E., Nature 212, 1225 (1966).CrossRefGoogle Scholar
  5. 5.
    Mc Govern, W. E., J. Atmos. Sci. 26, 623 (1969).CrossRefGoogle Scholar
  6. 6.
    Miller, S. I., Science, 117, 528 (1953); Miller, S. L., J. Am. Chem. Soc. 77, 2351 (1955).Google Scholar
  7. 7.
    Lemmon, R. M., Chem. Revs. 70, 95 (1970).CrossRefGoogle Scholar
  8. 8.
    Hodgson, G. N., and Ponnamperuma, C., Proc. Nat. Acad. Sci. U.S. 59, 22 (1968).CrossRefGoogle Scholar
  9. 9.
    Lohrmann, R., and Orgel, L. E., Science 171, 496 (1971); Handschuh, G. J., and Orgel, L. E., Science 179, 483 (1973).CrossRefGoogle Scholar
  10. 10.
    Ponnamperuma, C., Lemmon, R. M., Mariner, R., and Calvin, M., Proc. Nat. Acad. Sci. U.S. 49, 737 (1963).CrossRefGoogle Scholar
  11. 11.
    Oro, J., and Kimball, A. P., Arch. Biochem. Biophys. 94, 217 (1961).PubMedCrossRefGoogle Scholar
  12. 12.
    Dowler, M. J., Fuller, W. D., Orgel, L. E., and Sanchez, R. A. Science 169, 1320 (1970).PubMedCrossRefGoogle Scholar
  13. 13.
    Friedman, N., Miller, S. L., and Sanchez, R. A., Science 171, 1026 (1971).CrossRefGoogle Scholar
  14. 14.
    Ibanez, J. D., Kimball, A. P., and Oro, J., Science 173, 444 (1971).PubMedCrossRefGoogle Scholar
  15. 15.
    Schimpl, A., Lemmon, R. M., and Calvin, M., Science 147, 149 (1964).CrossRefGoogle Scholar
  16. 16.
    Bada, J. L., and Miller, S. L., Science 159, 423 (1968).PubMedCrossRefGoogle Scholar
  17. 17.
    Rubey, W. W., Geol. Soc. Amer. Spec. Paper 62, 631 (1955).Google Scholar
  18. 18.
    Holland, D. H., in Petrologic Studies: A Volume to Honor A. F. Buddington (Engel, A. E. J., James, H. L., and Leonard, B. F., eds.), p. 447, Geological Society of America, New York, 1962.Google Scholar
  19. 19.
    Abelson, P. H., Proc. Natl. Acad. Sci. U.S. 55, 1365 (1966).CrossRefGoogle Scholar
  20. 20.
    Cloud, P. E., Science 160, 729 (1968).PubMedCrossRefGoogle Scholar
  21. 21.
    Goody, R. M., “Atmospheric Radiation I, Theoretical Basis,” p. 421, Oxford University Press, London, 1964.Google Scholar
  22. 22.
    Noyes, W. A., and Leighton, P. A., “The Photochemistry of Gases”, p. 374, Dover, New York, 1966.Google Scholar
  23. 23.
    The value of 2.4 torr in Table I for the partial pressure of water vapor was based on the assumption that the primitive Earth had a relative humidity of 50% at 0°. The value of 24 torr is equivalent to a relative humidity of 100% at 25°C.Google Scholar
  24. 24.
    Watanabe, K., and Jursa, A. S., J. Chem. Phys. 41, 1650 (1964). Values for the absorption coefficient in the 200-300 nm region were measured in this laboratory.Google Scholar
  25. 25.
    Harteck, P., Reeves, R. R., Jr., and Thompson, B. A., Z. Naturforschg. 19a, 2 (1964); Thompson, B. A., Reeves, R. R., Jr., and Harteck, P., J. Phys. Chem. 69, 3964 (1965). It has been reported that 20% of the emission from the iodine lamp is at wavelengths less than 206.2 nm (26). The quartz window on our lamp filtered out the bulk of this shorter wavelength light. Furthermore several of the photolyses were performed with a 1 cm water filter which isolated the 206.2 nm line with no observed effect on the quantum yield or reaction.Google Scholar
  26. 26.
    Buschman, N. W., and Groth, W., Ber. Bunsenqes, Physik. Chem. 73, 859 (1969).Google Scholar
  27. 27.
    The quantum yield for ammonia photolysis is reported to be 0.25 (22). We obtained a value of 0.27 ± 0.03 using an HBr actinometer (28), and have adopted the 0.25 value.Google Scholar
  28. 28.
    Calvert, J. G., and Pitts, Jr., J. N., “Photochemistry,” p. 782, John Wiley, New York, 1966.Google Scholar
  29. 29.
    de Darevent, B. and Roberts, R., Proc. Roy. Soc. A216, 344 (1953).CrossRefGoogle Scholar
  30. 30.
    Brinkmann, R. T., J. Geophys. Res. 74, 5355 (1969).CrossRefGoogle Scholar
  31. 31.
    Van Valen, L., Science 171, 439 (1971).PubMedCrossRefGoogle Scholar
  32. 32.
    Sillen, L. G., Arkiv. Kemi 24, 431 (1971).Google Scholar
  33. 33.
    Eloranta, J., Soumen Kemistilihti 34, 107 (1961); Shaw, W. H. R., and Bordeaux, J. J., J. Am. Chem. Soc. 77, 4729 (1955).Google Scholar
  34. 34.
    Van Trump, J. E., and Miller, S. L., Earth and Planet. Sci. Lett. 20, 145 (1973).CrossRefGoogle Scholar
  35. 35.
    Sanchez, R. A., Ferris, J. P., and Orgel, L. E., Science 154, 784 (1966).PubMedCrossRefGoogle Scholar
  36. 36.
    Horowitz, N. H., and Miller, S. W., Prog. Chem. Org. Natural Products 20, 423 (1962).Google Scholar
  37. 37.
    Vancini, C. A., “Synthesis of Ammonia” (Bogars, B. J., ed., transl. by Pirt, L.), p. 60, Macmillan, London, 1971.Google Scholar

Copyright information

© Plenum Press, New York 1974

Authors and Affiliations

  • J. P. Ferris
    • 1
  • D. E. Nicodem
    • 1
  1. 1.Department of ChemistryRensselaer Polytechnic InstituteTroyUSA

Personalised recommendations