Optical and Electron Paramagnetic Properties of Radicals in Naphthalene and Anthracene Crystals

  • Noriaki Itoh
  • Taisu Chong


The impurity and defect states in organic crystals have been studied by several authors1),2) particularly for the purpose of clarifying the energy transfer processes in organic materials. Most studies have been made for aromatic hydrocarbon crystals which include another aromatic hydrocarbon molecule as an impurity. In such cases the highest electronic state of the impurity is fully occupied. On the other hand the radical with an additional hydrogen atom to anthracene or naphthalene molecules (the cyclohexadienyl-type radical, referred as C-radical) and with a missing hydrogen atom from these molecules (the aryl-type radical, referred as A-radical) has a half-occupied orbital and the crystal containing these radicals would offer an interesting system to study the interaction between the localized state and the host lattice in organic crystals.


Electron Paramagnetic Resonance Molecular Crystal Energy Transfer Process Lower Excited State Organic Crystal 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1).
    S. A. Rice and J. Jortner, Physics and Chemistry of Organic Solid State, vol. 8, ed. D. Fox, M. M. Labes, A. Weissberger (John Wiley, New York, 1967) p.199.Google Scholar
  2. 2).
    H. C. Wolf, Advances in Atomic and Molecular Physics, vol.1, ed. D. R. Bates and I. Esterman (Academic Press, New York, 1967) p.119.Google Scholar
  3. 3).
    L. A. Harrah and R. C. Hughes, Molecular Crystals 5, 141 (1968).CrossRefGoogle Scholar
  4. 4).
    T. Inoue, J. Phys. Soc. Japan 25, 914 (1968).ADSCrossRefGoogle Scholar
  5. 5).
    N. Itoh and T. Okubo, Molecular Crystals and Liquid Crystals 17, 303 (1972).CrossRefGoogle Scholar
  6. 6).
    Y. Akasaka, K. Masuda and S. Namba, J. Phys. Soc. Japan 30, 1686 (1971).ADSCrossRefGoogle Scholar
  7. 7).
    T. Chong and N. Itoh, J. Phys. Soc. Japan 35, 518 (1973).ADSCrossRefGoogle Scholar
  8. 8).
    R. V. Lloyd, F. Magnotta and D. E. Wood, J. American Chem. Soc. 90, 7142 (1968).CrossRefGoogle Scholar
  9. 9).
    P.H. Kasai, E. Hedaya and E.B. Whipple, J. American Chem. Soc. 91, 4364 (1969).CrossRefGoogle Scholar
  10. 10).
    T. Chong and N. Itoh, Molecular Crystals and Liquid Crystals 11, 315 (1970).CrossRefGoogle Scholar
  11. 11).
    T. Shida and I. Hanazaki, Bull. Chem. Soc. 43, 636 (1970).CrossRefGoogle Scholar
  12. 12).
    I. Hanazaki and S. Nagakura, Bull. Chem. Soc. 38, 1298 (1965).CrossRefGoogle Scholar
  13. 13).
    P.H. Kaai, P.A. Clark and E.B. Whipple, J. American Chem. Soc. 92, 2640 (1970).CrossRefGoogle Scholar
  14. 14).
    T. Chong, Y. Shibata and N. Itoh, to be published.Google Scholar
  15. 15).
    J.L. Katz, S.A. Rice, S. Choi and J. Jortner, J. Chem. Phys. 39, 1683 (1963).ADSCrossRefGoogle Scholar
  16. 16).
    K. Nakagawa and N. Itoh, to be published.Google Scholar
  17. 17).
    G.S. Pawley, phys. stat. sol. 20, 347 (1967).ADSCrossRefGoogle Scholar
  18. 18).
    H. Moser and D. Stieler, Zeits f. Angewandte Physik 12, 280 (1960).Google Scholar
  19. 19).
    P. Avakian and R.E. Merrifield, Molecular Crystals 5, 9 (1968).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1974

Authors and Affiliations

  • Noriaki Itoh
    • 1
  • Taisu Chong
    • 1
  1. 1.Department of Nuclear EngineeringNagoya UniversityFuro-cho, Chikusa-ku, NagoyaJapan

Personalised recommendations