Design and Study of One-Dimensional Organic Conductors II: TTF — TCNQ and Other Organic Semimetals

  • A. N. Bloch
  • D. O. Cowan
  • T. O. Poehler


What are the implications of the disordered one-dimensional conductors, discussed in the previous paper, for the development of organic materials of still higher conductivity? Simply, the situation is this. In lover-dimensional, narrow-band organic charge-transfer salts, we have systems in which the metallic state is inherently unstable. One way of suppressing the instabilities is by introducing sufficient disorder to “wash them out”. As demonstrated by examples12 such as NMP-TCNQ, this can lead in favorable circumstances to a spectacular increase in conductivity. Nevertheless the structural disorder remains itself a limiting factor. The localization of the electronic states at the Fermi level limits the conductivity to the diffusive range25 of a few hundred reciprocal ohm-centimeters—enormous by organic standards, but low compared with good inorganic conductors. To elevate organic conductivities into the truly metallic range requires some way of suppressing the tendency toward a distorted insulator without resorting to the introduction of structural disorder. We therefore seek materials consisting of symmetric molecules with no strong dipole moment, and forming structures which offer more flexibility for design than does a single conducting chain.


Acceptor Molecule Metallic Conduction Microwave Conductivity Madelung Energy Excitonic Insulator 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References (Papers I and II)

  1. 1.
    J.P. Ferraris, T.O. Cowan, V. Walatka, and J.H. Perlstein, J. Am. Chem. Soc. 95, 948 (1973).CrossRefGoogle Scholar
  2. 2.
    L.B. Coleman et al, Sol. St. Comm. 12, 1125 (1993).ADSCrossRefGoogle Scholar
  3. 3.
    W.J. Siemons et al, J. Chem. Phys. 39, 3523 (1963)ADSCrossRefGoogle Scholar
  4. R.G. Kepler, J. Chem. Phys. 39, 3528 (1963)ADSCrossRefGoogle Scholar
  5. L.R. Melby, Can. J. Chem. 43, 1448 (1965).CrossRefGoogle Scholar
  6. 4.
    For a review, see I.F. Schegolev, Phys. Stat. Solidi A12, 9 (1972).ADSGoogle Scholar
  7. 5.
    F.H. Herbstein, in J.D. Dunitz and J.A. Ibers, eds., Perspectives in Structural Chemistry, Vol. IV (1971).Google Scholar
  8. 6.
    R.E. Peierls, Quantum Theory of Solids (University Press, London, 1955), p. 108.MATHGoogle Scholar
  9. 7.
    A.W. Overhauser, Phys. Rev. Lett. 4, 462 (1960).ADSCrossRefGoogle Scholar
  10. 8.
    O.H. Le Blanc, J. Chem. Phys. 42, 4307 (1965).ADSCrossRefGoogle Scholar
  11. 9.
    W.A. Little, Phys. Rev. A13k, 1416 (1964).ADSCrossRefGoogle Scholar
  12. 10.
    R.E. Merrifield, J. Chem. Phys. 44, 4005 (1965).ADSCrossRefGoogle Scholar
  13. 11.
    J.C. Phillips, Phys Rev. Lett. 29, 1551 (1972).ADSCrossRefGoogle Scholar
  14. 12.
    A.N. Bloch, R.B. Weisman, and C.M. Varma, Phys. Rev. Lett. 28, 753 (1972).ADSCrossRefGoogle Scholar
  15. 13.
    According to CNDO results kindly supplied by R. Metzger (private communication).Google Scholar
  16. 14.
    R.E. Borland, Proc. Roy. Soc. (London) A274, 529 (1963).ADSGoogle Scholar
  17. 15.
    C. Papatriantafillou, Phys. Rev. B7, 5386 (1973).ADSGoogle Scholar
  18. 16.
    H.R. Zeller, Feskorperprobleme XIII, 31 (1973).Google Scholar
  19. 17.
    K. Krogmann, Angew. Chem. Int. Ed. 8, 35 (1969).CrossRefGoogle Scholar
  20. 18.
    B. Renker et al, Phys. Rev. Lett. 30, 1144 (1973).ADSCrossRefGoogle Scholar
  21. 19.
    A. Menth and M.J. Rice, Sol. St. Comm. 11, 1025 (1973).ADSCrossRefGoogle Scholar
  22. 20.
    P. Bruesch, M.J. Rice, S. Strassler, and H.R. Zeller (preprint).Google Scholar
  23. 21.
    J. Bernasconi, P. Bruesch, D. Kuse and H.R. Zeller, J. Phys. Chem. Solids (in press).Google Scholar
  24. 22.
    P. Sen and C.M. Varma, Bull. Am. Phys. Soc. 19, 49 (1974).Google Scholar
  25. 23.
    e.g., M.J. Rice and S. Strassler, Sol. St. Comm. 13, 125 (1973).ADSCrossRefGoogle Scholar
  26. 24.
    A.N. Bloch, B. Huberman, N.F. Mott and E.A. Davis, Electronic Processes in Non-Crystalline Materials (Oxford University Press, Oxford, 1971).Google Scholar
  27. 26.
    A.N. Bloch and C.M. Varma, J. Physics C 6, 1849 (1973).ADSCrossRefGoogle Scholar
  28. 27.
    V.K.S. Shante, C.M. Varma, and A.N. Bloch, Phys. Rev. B8, 4885 (1973).ADSGoogle Scholar
  29. 28.
    J. Kurkijarvi, Phys. Rev. B8, 922 (1973).ADSGoogle Scholar
  30. 29.
    W. Brenig, G. Dohler, and H. Heyzenau, Phil Mag, 27, 1093 (1973).ADSCrossRefGoogle Scholar
  31. 30.
    T.W. Thomas et al, J. Chem. Soc. 19 72, 1950.Google Scholar
  32. 31.
    The oversimplified diffusive model of Ehrenfreund et al [Phys Rev. Lett. 29, 269 (1972)], when purged of errors, satisfies the inequality and gives σoD ∼ 4√2 αL (L/a)2.CrossRefGoogle Scholar
  33. 32.
    T.O. Poehler, unpublished data.Google Scholar
  34. 33.
    M. Pollak and T.H. Geballe, Phys. Rev. Lett. 122, 1742 (1961).ADSGoogle Scholar
  35. 34.
    R.M. Vlasova et al, Sov. Phys. Sol. St. 12, 2979 (1971).Google Scholar
  36. 35.
    Y. Iida, Bull. Chem. Soc. Japan 42, 71, 637 (1969).CrossRefGoogle Scholar
  37. 36.
    A.N. Bloch, unpublished work.Google Scholar
  38. 37.
    A.J. Epstein et al, Phys. Rev. B5, 952 (1972).ADSGoogle Scholar
  39. 38.
    T.A. Kaplan, S.D. Mahanti, and W.M. Hartmann, Phys. Rev. Lett 27, 1796 (1971).ADSCrossRefGoogle Scholar
  40. 39.
    V. Walatka, Ph. D. thesis, Johns Hopkins University (unpublished).Google Scholar
  41. 40.
    D.J. Klein, W.A. Seitz, M.A. Butler, and Z.G. Soos, preprint.Google Scholar
  42. 41.
    M. Cutler, Phil. Mag. 24, 173 (1971).Google Scholar
  43. 42.
    M.A. Butler, J.P. Ferraris, A.N. Bloch, and D.O. Cowan, Chem. Phys. Lett. (in press).Google Scholar
  44. 43.
    e.g., B.I. Halperin and T.M. Rice, Rev. Mod. Phys. 40, 755 (1968).ADSCrossRefGoogle Scholar
  45. 44.
    T.E. Phillips et al, Chem. Comm. 1973, 471; T.J. Kistenmacher, T.E. Phillips, and D.O. Cowan, Acta Cryst. (in press).Google Scholar
  46. 45.
    F. Wudl et al, J. Am. Chem. Soc. 94, 670 (1972).CrossRefGoogle Scholar
  47. 46.
    A.N. Bloch, J.P. Ferraris, D.O. Cowan, and T.O. Pcehler, Sol. St. Comm. 13, 753 (1973).ADSCrossRefGoogle Scholar
  48. 47.
    J.H. Perlstein, J.P. Ferraris, V. Walatka, D.O. Cowan, and G.A. Candela, Proc. Conf. Mag. and Mag. Mats., Nov. 1972.Google Scholar
  49. 48.
    H.R. Zeller, private communication.Google Scholar
  50. 49.
    D.E. Shafer, G.A. Thomas, F. Wudl, J.P. Ferraris, and D.O. Cowan, Sol. St. Comm. (in press).Google Scholar
  51. 50.
    J. Bardeen, Sol. St. Comm. 13., 357 (1973).ADSCrossRefGoogle Scholar
  52. 51.
    P.W. Anderson, P.A. Lee, and M. Saitoh, Sol. St. Comm. 13, 595 (1973).ADSCrossRefGoogle Scholar
  53. P.A. Lee, T.M. Rice, and P.W. Anderson, Phys. Rev. Lett. 31, 462 (1973); Sol. St. Comm. (in press).ADSCrossRefGoogle Scholar
  54. 52.
    H. Fröhlich, Proc. Roy. Soc. A223, 296 (1954).ADSGoogle Scholar
  55. 53.
    T.O. Poehler, A.N. Bloch, J.P. Ferraris, and D.O. Cowan, preprint.Google Scholar
  56. 54.
    J.P. Ferraris, T.O. Poehler, A.N. Bloch, and D.O. Cowan, Tet. Lett. 27, 2553 (1973).CrossRefGoogle Scholar
  57. 55.
    T.J. Kistenmacher, private communication.Google Scholar
  58. 56.
    Y. Tomkeiwicz, private communication.Google Scholar

Copyright information

© Plenum Press, New York 1974

Authors and Affiliations

  • A. N. Bloch
    • 1
  • D. O. Cowan
    • 1
  • T. O. Poehler
    • 1
  1. 1.Johns Hopkins UniversityBaltimoreUSA

Personalised recommendations