Gas Concentration Measurement by Coherent Raman Anti-Stokes Scattering

  • P. R. Régnier
  • J.-P. E. Taran

A novel technique for gas concentration measurements is described. This technique makes use of coherent Raman anti-Stokes scattering, which can be made much stronger than ordinary Raman scattering under conditions that are practical for gas probing applications. The intensity is sufficient to allow an image of the spatial distribution of a minor constituent (H2 at about 100 to 1000 ppm) to be recorded on photographic film. In this presentation, we describe the basic phenomena, potential measurement capabilities, and the results of feasibility experiments.


Stimulate Raman Scattering Ruby Laser Stokes Wave Spontaneous Raman Scattering Stokes Beam 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    T. Hirschfeld, E. R. Schildkraut, H. Tannenbaum and D. Tannenbaum, Appl. Phys. Letters 22, 38 (1973)ADSCrossRefGoogle Scholar
  2. 1a.
    R. K. Chang and D. G. Fouche, Laser Focus 8, 43 (1972).Google Scholar
  3. 2.
    G. F. Widhopf and S. Lederman, AIAA Journal 9, 309 (1971)ADSCrossRefGoogle Scholar
  4. 2a.
    M. Merian, Rech. Aer. 2, 85 (1972)Google Scholar
  5. 2b.
    D. L. Hartley, AIAA Journal 10, 688 (1972).ADSCrossRefGoogle Scholar
  6. 3.
    G. Bret, Annales Radioelectricité 22, 236 (1967).Google Scholar
  7. 4.
    I. Reinhold and M. Maier, Opt. Commun. 5, 31 (1972).ADSCrossRefGoogle Scholar
  8. 5.
    P. D. Maker and R. W. Terhune, Phys. Rev. 137, 801 (1965).ADSCrossRefGoogle Scholar
  9. 6.
    W. G. Rado, Appl. Phys. Letters 11, 123 (1967).ADSCrossRefGoogle Scholar
  10. 7.
    S. Barak and S. Yatsiv, Phys. Rev. A3, 382 (1971).ADSGoogle Scholar
  11. 8.
    G. Hauchecorne, F. Kerhervé and G. Mayer, J. Physique 32, 47 (1971).CrossRefGoogle Scholar
  12. 9.
    F. De Martini, G. P. Giuliani and E. Santamato, Opt. Commun. 5, 126 (1972).ADSCrossRefGoogle Scholar
  13. 10.
    P R. Régnier and J.-P. E. Taran, Appl. Phys. Letters 23, 240 (1973).ADSCrossRefGoogle Scholar
  14. 11.
    P. R. Régnier, F. Moya, and J.-P. E. Taran, AIAA paper No. 73–702, presented at the AIAA 6th Fluid and Plasma Dynamics Conference, Palm Springs, California, July 16–18, 1973.Google Scholar
  15. 12.
    N. Bloembergen, “Nonlinear Optics”, W. A. Benjamin, New York, 1965.Google Scholar
  16. 13.
    J. Lukasik and J. Ducuing, Phys. Rev. Letters 28, 1155 (1972).ADSCrossRefGoogle Scholar
  17. 14.
    P. P. Sorokin, J. J. Wynne, and J. R. Lankard, Appl. Phys. Letters 22, 342, 1973.ADSCrossRefGoogle Scholar
  18. 15.
    E. J. Allin, A. D. May, B. P. Stoicheff, J. C. Stryland, and H. L. Welsh, Appl. Optics 6, 1597 (1967).ADSCrossRefGoogle Scholar
  19. 16.
    P. Lallemand and P. Simova, J. Mol. Spectroscopy, 26, 262 (1968).ADSCrossRefGoogle Scholar
  20. 1.
    M. Maier, W. Kaiser, and J. A. Giordmaine, Phys. Rev. 177, 580 (1969).ADSCrossRefGoogle Scholar
  21. 2.
    E. Garmire, F. Pandarese, and C. H. Townes, Phys. Rev. Letters 11, 160 (1963).ADSCrossRefGoogle Scholar
  22. 3.
    M. -M. Audibert, C. Joffrin, and J. Ducuing, Chem. Phys. Letters 19, 26 (1973).ADSCrossRefGoogle Scholar
  23. 4.
    M. Lapp, L. M. Goldman, and C. M. Penney, Science 175, 1112 (1972).ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1974

Authors and Affiliations

  • P. R. Régnier
    • 1
  • J.-P. E. Taran
    • 1
  1. 1.Office National d’Etudes et de Recherches Aérospatiales (ONERA)ChâtillonFrance

Personalised recommendations