Immobilized Enzymes in Milk Systems

  • T. Richardson
  • N. F. Olson


Milk systems offer ideal media for studying the use of immobilized enzymes in food processing and analyses. For example, milk and many milk products are fluids which facilitate their processing with immobilized enzymes. Furthermore, some processes in the dairy industry already require the use of enzymes, e.g. the clotting of milk by rennin, pepsin and the microbial milk-clotting enzymes. Thus, there are excellent opportunities for integrating immobilized enzymes into present dairy processing situations, possibly in a continuous mode of operation. In addition, modification of milk constituents, such as milkfat with immobilized lipases, offers further opportunities for processing.


Immobilize Enzyme Continuously Stir Tank Reactor Casein Micelle White Material Casein Fraction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Agner, K., in “Structure and Function of Oxidation-Reduction Enzymes,” Akeson, A., Ehrenberg, A., Ed., Pergamon Press, New York, N.Y., 1972, p. 329.Google Scholar
  2. American Public Health Association, Standard Methods for the Examination of Dairy Products, 12th ed., The Association, New York, 1967.Google Scholar
  3. Ashoor, S. H., Sair, R. A., Olson, N. F., Richardson, T., Biochim. Biophys. Acta 229, 423 (1971).Google Scholar
  4. Balcom, J., Foulkes, P., Olson, N. F., Richardson, T., Proc. Biochem. 6(8), 42 (1971).Google Scholar
  5. Cuatrecasas, P., Wilchek, M., Anfinsen, C. B., Proc. Nat. Acad. Sci. U.S. 61, 636 (1968).CrossRefGoogle Scholar
  6. Dolgikh, T. V., Surovtsev, V. I., Kozlov, L. V., Antonov, V. K., Ginodman, L. M., Zvyatintsev, V. I., Prikl. Biokhim. Mikrobiol. 7, 686 (1971).Google Scholar
  7. Dose, Z., Zaki, L., Z. Naturforsch. 26b, 144 (1971).Google Scholar
  8. Ernstrom, C. A., “Rennin Action and Cheese Chemistry” in Fundamentals of Dairy Chemistry, Webb, B. H., Johnson, A. H., Ed., AVI Publishing Co., Westport, Conn., 1965, p. 590.Google Scholar
  9. Ferrier, L. K., Richardson, T., Olson, N. F., Enzymol. 42, 273 (1972).Google Scholar
  10. Ferrier, L. K., Richardson, T., Olson, N. F., Hicks, C. L., J. Dairy Sci. 55, 726 (1972).CrossRefGoogle Scholar
  11. Gamier, J., Ribadeau-Dumas, B., J. Dairy Res., 37, 493 (1970).CrossRefGoogle Scholar
  12. George, P., Nature 160, 41 (1947).CrossRefGoogle Scholar
  13. Green, M. L., Crutchfield, G., Biochem. J. 115, 183 (1969).Google Scholar
  14. Hogg, D. McC, Jago, G. R., Biochem. J. 117, 779 (1970).Google Scholar
  15. Hustad, G. O., Richardson, T., Olson, N. F., J. Dairy Sci. 56, 1111 (1973a).CrossRefGoogle Scholar
  16. Hustad, G. O., Richardson, T., Olson, N. F., J. Dairy Sci. 56, 1118 (1973b).CrossRefGoogle Scholar
  17. Imamoto, Y., Tsunemitsu, A., Okuda, K., J. Dent. Res. 51, 877 (1972).CrossRefGoogle Scholar
  18. Kirchmeier, O., Kolloid-Z. 236, 137 (1970).CrossRefGoogle Scholar
  19. Klebanoff, S. J., J. Clin. Invest. 46, 1078 (1967a).Google Scholar
  20. Klebanoff, S. J., J. Exp. Med. 126, 1063 (1967b).CrossRefGoogle Scholar
  21. Klebanoff, S. J., J. Bact. 95, 2131 (1968).Google Scholar
  22. Klebanoff, S. J., J. Reticulo-endothel. Soc. 12, 170 (1972).Google Scholar
  23. Klebanoff, S. J., Clem, W. H., Luebke, R. G., Biochim. Biophys. Acta 117, 63 (1966).CrossRefGoogle Scholar
  24. Klebanoff, S. J., Luebke, R. G., Proc. Soc. Exp. Biol. Med. 118, 483 (1965).Google Scholar
  25. Larson, W. A., Olson, N. F., Lund, D. B., J. Dairy Sci. 53, 646 (1970).Google Scholar
  26. Lehrer, R. I., J. Bact. 99, 361 (1969).Google Scholar
  27. Line, W. F., Kwong, A., Weetal, H. H., Biochim. Biophys. Acta 242, 194 (1971).Google Scholar
  28. McMeekin, T. L., Groves, M. L., “Physical Equilibria in Milk: Proteins,” in Fundamentals of Dairy Chemistry, Webb, B. H., Johnson, A. H., Ed., AVI Publishing Co., Westport, Conn., 1965, p. 374.Google Scholar
  29. Miller, H., Biochem. J. 68, 275 (1958).Google Scholar
  30. Morgulis, S., Beber, M., Rabkin, I., J. Biol. Chem. 68, 521 (1926).Google Scholar
  31. O’Neill, S. P., Biotechnol. Bioeng. 14, 20 (1972).Google Scholar
  32. Parry, R. M., Jr., Carrol, R. J., Biochim. Biophys. Acta 198, 138 (1969).Google Scholar
  33. Payens, T. A. J., J. Dairy Sci. 49, 1317 (1966).CrossRefGoogle Scholar
  34. Quarne, E. L., Larson, W. L., Oison, N. F., J. Dairy Sci. 51, 848 (1968).CrossRefGoogle Scholar
  35. Ribadeau-Dumas, B., Garnier, J., J. Dairy Res. 37, 269 (1970).CrossRefGoogle Scholar
  36. Rose, D., Dairy Sci. Abstr., 31, 171 (1969).Google Scholar
  37. Rosoff, H. D., Cruess, W. V., Food Res. 14, 283 (1949).Google Scholar
  38. Simmons, S. R., Karnovsky, M. L., J. Exp. Med. 138, 44 (1973).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1974

Authors and Affiliations

  • T. Richardson
    • 1
  • N. F. Olson
    • 1
  1. 1.Department of Food ScienceUniversity of WisconsinMadisonUSA

Personalised recommendations