Acousto-Optical Interactions in Guided Wave Structures

  • E. G. H. Lean


Acousto-optic interactions using coherent light and microwave acoustics in solids have been extensively studied (for review see R. Damon, 1970; Quate, 1965). Many practical acousto-optic devices for laser beam modulation (Maydan, 1970), deflection (Gordon, 1966), filtering (Harris, 1969) and signal processing (Collins, 1967) have been realized. Recently, acousto-optic interactions in guided wave structures have been experimentally demonstrated (Kuhn et al, 1970; Kuhn et al, 1971). These thin film acousto-optical devices have significant advantages over their bulk wave counterparts because of the unique properties of guided waves. Guided optical waves propagate in a thin film with a thickness on the order of optical wavelength. The index of refraction of the film is required to be higher than that of the substrate material so that the light can be trapped in the film by total internal refractions between two interfaces. Depending on the thickness of the film, many discrete modes of either transverse electric (TE) or magnetic (TM) modes can propagate in the film.


Rayleigh Wave Acoustic Surface Wave Diffraction Efficiency Transverse Electric Bragg Diffraction 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Berry, M. V., “The Diffraction of Light by Ultrasound” Academic Press, New York (1966).Google Scholar
  2. Chang, W., IEEE J. Quantum Electronics, QE-7, No. 4, 167–170 (1971).ADSCrossRefGoogle Scholar
  3. Chubachi, N., J. Kushibiki and Y. Kikuchi, Electronics Lett. Vol. 9, No. 9 193 (1973).CrossRefGoogle Scholar
  4. Chu, R. S. and T. Tamir, IEEE Trans. Microwave Theory & Tech. MTT-17, 1002 (1969).ADSGoogle Scholar
  5. Collins, J. H., E. G. H. Lean and H. J. Shaw, Appl. Phys. Lett. 11, 240 (1967).ADSCrossRefGoogle Scholar
  6. Collins, R. E., Field Theory of Guided Waves (McGraw Hill, New York) (1960).Google Scholar
  7. Dakss, M. L., L. Kuhn, P. F. Heidrich and B. A. Scott, Appl. Phys. Lett. 16, 523, (1970).ADSCrossRefGoogle Scholar
  8. Damon, R. W., W. T. Maloney and D. H. McMahon, Physical Acoustics, Vol. VII, Chapter 5 (1970).Google Scholar
  9. Dixon, R. W., J. of Appl. Phys., Vol. 38, 5149, 1967.ADSCrossRefGoogle Scholar
  10. Gfeller, F. R., and C. W. Pitt, Electronics Letters (1972).Google Scholar
  11. Gordon, E. I., Proc. IEEE 54 1391 (1966).CrossRefGoogle Scholar
  12. Gordon, E. I., IEEE J. Quant. Electr. QE-2, 104 (1966).ADSCrossRefGoogle Scholar
  13. Harris, S., S. T. K. Nieh and D. K. Winslow, Appl. Phys. Lett. 15, 325 (1969).ADSCrossRefGoogle Scholar
  14. Hickernell, F. S., 1971 Ultrasonics Symposium.Google Scholar
  15. Kaminow, I. P., J. R. Carruthers, Appl. Phys. Lett. Vol. 22, No. 7, 326 (Apr. 1973).ADSCrossRefGoogle Scholar
  16. Klein, W. R. and B. D. Cook, IEEE Trans. Sonics & Ultrasonics, Vol. SU-14, 123 (1967).CrossRefGoogle Scholar
  17. Kuhn, L., J. Quantum Electronics QE-5, 383 (1969).ADSCrossRefGoogle Scholar
  18. Kuhn, L., M. L. Dakss, P. F. Heidrich and B. A. Scott, Appl. Phys. Lett. 17, 265, (1970).ADSCrossRefGoogle Scholar
  19. Kuhn, L., P. F. Heidrich and E. G. H. Lean, Appl. Phys. Lett. 19, 428 (1971).ADSCrossRefGoogle Scholar
  20. Lean, E. G. H., C. F. Quate, and H. J. Shaw — Appl. Phys. Lett. 10, 48 (1967).ADSCrossRefGoogle Scholar
  21. Lean, E. G. H., “Studies of Microwave Shear Waves in Solids” PhD Dissertation, Stanford University (1967).Google Scholar
  22. Lean, E. G. H. and C. G. Powell, Proc. IEEE 58 1939–1947 (1970).CrossRefGoogle Scholar
  23. Lean, E. G. H. and S. C.-C. Tseng, J. of Appl. Phys. 41, 3192 (1970).CrossRefGoogle Scholar
  24. Lean, E. G. H., Progress in Optics XI (Editor, E. Wolf) 125 (1973).Google Scholar
  25. Lean, E. G. H. and A. N. Broers, Microwave Journal, (March 1970).Google Scholar
  26. Lord Rayleigh, Proc. London Meth. Soc. 17 (1885);Google Scholar
  27. W. M. Ewing, W. S. Jardetsky and F. Press, Elastic Waves in Layered Media, 31 (1957).MATHGoogle Scholar
  28. Love, E. A. H. Some Problems in Geodynamics (Cambridge, 1911).MATHGoogle Scholar
  29. Maydan, D., J. Appl. Phys. 41, 1552 (1970).ADSCrossRefGoogle Scholar
  30. Nelson, D. F. and J. McKenna, J. Appl. Phys. 38, 4057 (1967).ADSCrossRefGoogle Scholar
  31. Nye, J. J., Physical Properties of Crystal (Oxford, Clarendon Press) 241 (1957).Google Scholar
  32. Quate, C. F., C. D. W. Wilkinson and D. K. Winslow, IEEE Proc. 53, 1604 (1965).CrossRefGoogle Scholar
  33. Ramon, C. V. and N. S. N. Nath, Proc. Ind. Acad. Sci. 2A, 413, (1935).Google Scholar
  34. Slater, J. C., Rev. Mod. Phys. 30, 197 (1958).MathSciNetADSMATHCrossRefGoogle Scholar
  35. Smith, W. R., H. M. Gerard, J. H. Collins, T. M. Reeder and H. J. Shaw, IEEE Trans. on Microwave Theory & Tech., vol. MTT-17, pp 865–873 (1969).ADSCrossRefGoogle Scholar
  36. Stern, E., IEEE Trans. Microwave Theory & Tech. MTT-17, 835 (1969).ADSCrossRefGoogle Scholar
  37. Stonely, R., Proc. Roy. Soc, A106, 416 (1964).ADSGoogle Scholar
  38. Tien, P. K., R. Ulrich and R. J. Martin, Appl. Phys. Lett. 14, 291 (1969).ADSCrossRefGoogle Scholar
  39. Tien, P. K., Appl. Opt., Vol. 10, pp 2395–2413 (1971).ADSCrossRefGoogle Scholar
  40. Tsai, C. S. and S. K. Yao, J. Appl. Phys. 43, 5081 (1972).ADSCrossRefGoogle Scholar
  41. Ulrich, R., J. Opt. Soc. Am. 60, 1337 (1970).ADSCrossRefGoogle Scholar
  42. Viktorov, I. A., Rayleigh and Lamb Waves, Plenum Press, (1967).Google Scholar
  43. Warner, A. W., D. L. White and W. A. Bonner, J. Appl. Phys., Vol. 43, No. 11, 4489 (1972).ADSCrossRefGoogle Scholar
  44. White, R. M. and F. M. Voltmer, Appl. Phys. Lett. 7, 314 (1965).ADSCrossRefGoogle Scholar
  45. Willard, G. W., J. Acoust. Soc. Am. 21, 101 (1949).ADSCrossRefGoogle Scholar
  46. Yariv, A., “Introduction to Optical Electronics,” Holt, Rinehart & Winston, N. Y. 310 (1971).Google Scholar

Copyright information

© University of California 1974

Authors and Affiliations

  • E. G. H. Lean
    • 1
  1. 1.IBM T. J. Watson Research CenterYorktown HeightsUSA

Personalised recommendations