Advertisement

Periodic Couplers

  • J. H. Harris

Abstract

When the optical properties of a portion of a planar waveguide are caused to vary in a periodic fashion the resulting structure may be used to couple energy from a collimated beam, e. g. a laser beam, into the waveguide. In principle, the device may be used to couple the light in a beam of any size into a film that need only be thick enough to support one guided mode. Because the coupling length, i. e., the beam size, may be arbitrarily large, the device belongs to the class of wide aperture couplers. The prism coupler also belongs to this class. As might be expected, the coupling length of practical structures is not arbitrary but is limited by tolerance requirements on the uniformity of the waveguide and the periodicities. These requirements not withstanding, couplers exhibiting high efficiency have been demonstrated with coupling lengths approaching one thousand times the thickness of the film into which the light is introduced.

Keywords

Propagation Constant Coupling Efficiency Diffraction Order Collimate Beam Reciprocity Theorem 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. L. Dakss, L. Kuhn, P. F. Heidrich, and B. A. Scott, Appl. Phys. Lett. 16, 523 (1970).ADSCrossRefGoogle Scholar
  2. 2.
    D.G. Dalgoutte, Opt. Comm. 8, 124(1973).ADSCrossRefGoogle Scholar
  3. 3.
    Y. Y. Teng and E. A. Stern, Phys. Rev. Lett. 19, 511 (1967).ADSCrossRefGoogle Scholar
  4. 4.
    H. Kogelnik and T. P. Sosnowski, Bell Syst. Tech. J. 49, 1602 (1970).Google Scholar
  5. 5.
    D. B. Ostrowsky and A. Jacques, Appl. Phys. Lett. 18, 556 (1971).ADSCrossRefGoogle Scholar
  6. 6.
    F. R. Gfeller and C. W. Pitt, Co-linear Acousto-Optic Deflection in Thin Films, Dept. Electronics and Elect. Engrg. Rept., U. College, London (Sept. 1972).Google Scholar
  7. 7.
    A. Hessel and A. A. Oliner, Appl. Opt. 4, 1275 (1965).ADSCrossRefGoogle Scholar
  8. 7a.
    T. Tamir and H. L. Bertoni, J. Opt. Soc. Am. 61, 1397 (1971).ADSCrossRefGoogle Scholar
  9. 7b.
    S. T. Peng, T. Tamir, and H. L. Bertoni, Elect. L Lett. 9, 150 (1973).CrossRefGoogle Scholar
  10. 7c.
    C. Elachi and C. Yeh, J. Appl. Phys. 44, 3145 (1973).ADSCrossRefGoogle Scholar
  11. 7d.
    L. L. Hope, Opt. Comm. 5, 179 (1972).CrossRefGoogle Scholar
  12. 7e.
    F. W. Dabby, A. Kestenbaum, and U. C. Paek, Opt. Coram. 6, 125 (1972).ADSCrossRefGoogle Scholar
  13. 7f.
    M. Neviere, R. Petit, and M. Cadilhac, Opt. Comm. 8, 113 (1973).ADSCrossRefGoogle Scholar
  14. 8.
    J. H. Harris, R. K. Winn, and D. G. Dalgoutte, Appl. Opt. 11, 2234 (1972).ADSCrossRefGoogle Scholar
  15. 8a.
    K. Ogawa, W. S. Chang, B. L. Sopori, and F. J. Rosenbaum, IEEE Trans. QE-9, 29 (1973).Google Scholar
  16. 9.
    L. V. Iogansen, Soviet Phys. -Tech. Phys. 11, 1529 (1967).Google Scholar
  17. 9a.
    J. H. Harris, R. Shubert and J. N. Polky, J. Opt. Soc. Am. 60, 1007 (1970).ADSCrossRefGoogle Scholar
  18. 9b.
    J. E. Midwinter, IEEE Trans. QE-6, 583 (1970).Google Scholar
  19. 9c.
    P.K. Tien and R. Ulrich, J. Opt. Soc. Am. 60, 1325 (1970).ADSCrossRefGoogle Scholar
  20. 9d.
    R. Ulrich, J. Opt. Soc. Am. 60, 1337 (1970).ADSCrossRefGoogle Scholar
  21. 9e.
    J. H. Harris and R. Shubert, IEEE Trans. MTT-19, 269 (1971).Google Scholar
  22. 9f.
    R. Ulrich, J. Opt. Soc. Am. 61, 1467 (1971).ADSCrossRefGoogle Scholar
  23. 9g.
    T. Tamir and H. L. Bertoni, J. Opt. Soc. Am. 61, 1397 (1971).ADSCrossRefGoogle Scholar
  24. 10.
    D.S. Jones, The Theory of Electromagnetism, pp. 63–65, Macmillan (1964).MATHGoogle Scholar

Copyright information

© University of California 1974

Authors and Affiliations

  • J. H. Harris
    • 1
  1. 1.Electrical Engineering DepartmentUniversity of WashingtonUSA

Personalised recommendations